Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:We aim to determine if mice in our mouse colony had similar of different microbiomes. To do this, we perfromed 16S sequencing of stool from unifected mice of the gentotypes listed below. We also looked at how infection causes dysbiosis of the mircobiome, measuring 16S sequencing over a C.rodentium infection timecourse.
Project description:We explore whether a low-energy diet intervention for Metabolic dysfunction-associated steatohepatitis (MASH) improves liver disease by means of modulating the gut microbiome. 16 individuals were given a low-energy diet (880 kcal, consisting of bars, soups, and shakes) for 12 weeks, followed by a stepped re-introduction to whole for an additional 12 weeks. Stool samples were obtained at 0, 12, and 24 weeks for microbiome analysis. Fecal microbiome were measured using 16S rRNA gene sequencing. Positive control (Zymo DNA standard D6305) and negative control (PBS extraction) were included in the sequencing. We found that low-energy diet improved MASH disease without lasting alterations to the gut microbiome.
Project description:Alcoholic liver disease (ALD) is a kind of liver disease that will result in liver cancer and some other high death rate liver disease. The study results show that riboflavin could protect the mouse against ALD. Then the study divides the C57BL/6 mice into the three groups including Control (C), Alcohol, Alcohol with riboflavin (AR) groups respectively. And the study makes the mouse stool samples 16S RNA sequencing (RNA-seq) to find the differential itestinal microbiota homeostasis among three groups futher and does the related analysis in riboflavin-treated alcoholic liver disease.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.
Project description:The human colon contains an extensively diverse microbial ecosystem and one of the most numerous communities of immune cells. Studies have highlighted dynamic crosstalk between immune cells and commensals. While studies have demonstrated increasing diversity of microbiota from stomach to stool, whether and how immune cell heterogeneity and microbiota diversity change across the colon is undefined. Furthermore, whether these changes are co-depended in the healthy colon is unknown. Here, tissue samples are collected from caecum, transverse colon, sigmoid colon and mLN of cadaveric donors by the Cambridge Biorepository of Translational Medicine (CBTM). We use single cell RNA sequencing (10X genomics) to assess the dynamics of immune cell populations across the colon and in matching lymph nodes. Associated microbiome 16S sequencing data is available.