Project description:Sweet potato virus disease (SPVD) is one of the most devastating diseases affecting sweetpotato (Ipomoea batatas), an important food crop in developing countries. SPVD develops when sweetpotato plants are dually infected with sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV). In the current study, global gene expression between SPVD affected plants and virus-tested control plants (VT) were compared in the susceptible ‘Beauregard’ and resistant ‘NASPOT 1’ (Nas) sweetpotato cultivars at 5, 9, 13 and 17 days post inoculation (DPI).
Project description:To screen genes related to the development of sweet potato tuberous roots, the high throughput sequencing of different stages of sweet potato tuberous roots was performed. The fibrous roots (FR; roots at 20 dap), developing tuberous roots (DR; roots at 60 dap) and mature tuberous roots (MR; roots at 120 dap) of Ipomoea batatas (L.) Taizhong 6 and MBP3 overexpressed lines were used for transcriptome analysis. Totally, we identified 5488 differentially expressed genes between different stage tuberous roots of Taizhong6 and 14312 differentially expressed genes between the tuberous roots of Taizhong6 and MBP3 overexpressed lines, by calculating the gene FPKM in each sample and conducting differential gene analysis. This study provides a foundation for the mechanism analysis of sweet potato tuberous root development.
Project description:Plant microRNAs (miRNAs) have emerged as important regulators in developmental processes and stress responses in plants. To identify the wound-responsive miRNAs in the leaves of sweet potato, small RNA deep sequencing was conducted on unwounded and wounded leaves (30 min). Total RNAs were isolated for library construction and analyzed by RNA-sequencing via Illumina Genome Analyzer IIx platform. About 16 million total reads were obtained for each sample.
Project description:To better understand the regulatory mechanisms of IbBBX24-mediated Fusarium oxysporum Schlecht. f. sp. batatas (Fob) resistance, we performed ChIP-Seq analysis using overexpression line infected with Fob at 1 dpi.
Project description:Potato plants are sensitive to multiple abiotic stresses such as drought, low temperature and high light. We analyzed the transcriptome of WT potato plants as well as that of transgenic potato plants expressing the Arabidopsis stress related transcription factor CBF1 that confers tolerance to multiple stresses.