Project description:Potato plants are sensitive to multiple abiotic stresses such as drought, low temperature and high light. We analyzed the transcriptome of WT potato plants as well as that of transgenic potato plants expressing the Arabidopsis stress related transcription factor CBF1 that confers tolerance to multiple stresses.
Project description:Global gene expression signatures was analysed through microarray expression profiling as a discovery platform to identify up and down regulated ESTs that represent genes involved in metabolic pathways in the leaf, fibrous root and storage root (tuber forming root) of sweetpotato (Ipomoea batatas) as affcted by high temperature stress (40oC) compared to ambient temperature (30oC). Also Global gene expression signatures was analysed by the same procedure to explore up and down regulated ESTs in tuberous root of sweet potato in comparison with fibrous root of Ipomoea cornea and identify unique ESTs that represent genes involved in tuber formation in sweet potato.
Project description:Potato plants are sensitive to multiple abiotic stresses such as drought, low temperature and high light. We analyzed the transcriptome of WT potato plants as well as that of transgenic potato plants expressing the Arabidopsis stress related transcription factor CBF1 that confers tolerance to multiple stresses. Wild type and AtCBF1OX transgenic potato plants were exposed to low temperature, high light, drought or kept under control conditions as described below in detail, and transcriptional changes induced by the different stresses were analyzed.
Project description:Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C). Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Keywords: SAGE; time course; stress response; cold acclimation; freezing tolerance
Project description:Potato (Solanum tuberosum L.), as an important food crop on the Qinghai-Tibet Plateau, is prone to low temperature and frost damage during the seedling stage, causing economic losses for farmers. In this study, transcriptome analyses were conducted on the leaves of Atlantic, KY130 and KY140 potato varieties following exposure to cold stress (CS). The genes StPAL(Soltu.Atl.09_2G005110) and StGAD(Soltu.Atl.11_3G000340), suggesting their involvement in the regulation of cold resistance in potato. “Flavonoid-related metabolism,” “lipid metabolism,” “amino acid metabolism,” “carbohydrate metabolism,” “nucleotide metabolism,” and “energy metabolism” might play an important role in the cold resistance of potato. Our results provided novel insights into the molecular mechanisms underlying cold resistance in potato.
2025-03-12 | GSE291340 | GEO
Project description:Low temperature treatment sample sequencing
| PRJNA587793 | ENA
Project description:Low temperature stress of potato Raw sequence reads