Project description:Potato plants are sensitive to multiple abiotic stresses such as drought, low temperature and high light. We analyzed the transcriptome of WT potato plants as well as that of transgenic potato plants expressing the Arabidopsis stress related transcription factor CBF1 that confers tolerance to multiple stresses.
Project description:Global gene expression signatures was analysed through microarray expression profiling as a discovery platform to identify up and down regulated ESTs that represent genes involved in metabolic pathways in the leaf, fibrous root and storage root (tuber forming root) of sweetpotato (Ipomoea batatas) as affcted by high temperature stress (40oC) compared to ambient temperature (30oC). Also Global gene expression signatures was analysed by the same procedure to explore up and down regulated ESTs in tuberous root of sweet potato in comparison with fibrous root of Ipomoea cornea and identify unique ESTs that represent genes involved in tuber formation in sweet potato.
Project description:Potato plants are sensitive to multiple abiotic stresses such as drought, low temperature and high light. We analyzed the transcriptome of WT potato plants as well as that of transgenic potato plants expressing the Arabidopsis stress related transcription factor CBF1 that confers tolerance to multiple stresses. Wild type and AtCBF1OX transgenic potato plants were exposed to low temperature, high light, drought or kept under control conditions as described below in detail, and transcriptional changes induced by the different stresses were analyzed.
Project description:Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C). Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Keywords: SAGE; time course; stress response; cold acclimation; freezing tolerance
2008-10-01 | GSE11461 | GEO
Project description:Low temperature treatment sample sequencing
| PRJNA587793 | ENA
Project description:Low temperature stress of potato Raw sequence reads
Project description:Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady state response to the mild heat stress encountered in temperate agriculture. In the present work we therefore exposed tuberising potato plants to mildly elevated temperatures (30/20C), day/night) for up to five weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberisation signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals. In this submission we are looking at gene expression changes with respect to both temperature and time, every 4h over a 24h period whereby diurnal changes may be apparent.