Project description:Here we report metagenomic sequencing data in gut microbiota of autism spectrum disorders (ASD) compared with healthy volunteers (30 for ASD children and 30 for healthy controls, respectively). The genes changed in autistic subjects involved 1,312,364 analytes that compare to 1,335,835 analytes in healthy controls. The number of taxa in autistic subjects were significantly increased as compared to the healthy controls based on the phylum and genus level (P = 0.001). However, the number of species were significantly decreased in autistic subjects (P = 0.001).
2020-09-30 | GSE113540 | GEO
Project description:Gut microbiota profile in Autism Spectrum Disorders patients
Project description:Changes in gut microbiota have been implicated in pathophysiology and cognitive capabilities of patients suffering from autism spectrum disorder. Yet, factors that mediate this interaction remain not fully understood. In this study, we analyzed stool samples from sever autistic pediatric patients and healthy individuals. Using multi omics platforms, we characterized microbiota diversities, proteins, and possible altered metabolic pathways.
Project description:Here we report 16S rRNA data in gut microbiota of autism spectrum disorders compared with healthy volunteers. A total of 1322 operational taxonomic units (OTUs) were identified in the sequence data. The Bacteroidetes and Firmicutes were both dominated phylum in ausitic subjects and healthy controls. Phylum level analysis showed a clear alteration of the bacterial gut community in ASD characterized by a higher Firmicutes (P < 0.05), Proteobacteria (P < 0.001), and Actinobacteria (P < 0.001) than that in healthy controls. However, Bacteroidetes were significantly decreased in ASD patients (P < 0.001).
Project description:The period from birth to two years is the phase of the fastest growth and development in children, as well as an important window for the development of intestinal microbiota. Dysbiosis of the gut microbiome can lead to various adverse conditions in children, including malabsorption and immune abnormalities, ultimately resulting in a series of negative events related to growth and development. Lysine acetylation, as a significant post-translational modification, plays a complex and crucial role in the regulation of gut microbiota. This study aims to investigate the mechanism by which ABX-induced lysine acetylation affects the abnormal physiological state simulating gut microbiota dysbiosis in children. In this study, we identified a total of 16,579 acetylation sites from 5,218 proteins. We found that antibiotic-induced dysbiosis in young mice (3 weeks) can cause extensive changes in the lysine acetylation and proteomic profiles of cecal tissue. Differentially acetylated proteins are involved in various metabolic pathways, including the citrate cycle (TCA) cycle, butanoate metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis. These differential acetylation sites are distributed across the cytoplasm, nucleus, and mitochondria, suggesting that multiple cellular functions are involved in regulation. Our findings suggest that early-life gut microbiota dysbiosis may lead to a series of metabolic disorders by regulating lysine acetylation in cecal tissue, resulting in delayed growth and development. This study aims to provide valuable insights into the molecular mechanisms underlying a series of pathophysiological processes caused by early-life gut microbiota dysbiosis. It contributes to a deeper understanding of the consequences of acetylation changes associated with early-life gut microbiota dysbiosis and its potential role in metabolic disorders.
2025-09-15 | PXD064558 | Pride
Project description:Analysis of gut microbiota profiles and their associations in children with autism spectrum disorders in Bangladesh