Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:Abstract: Many mouse models of neurological disease use the tetracycline transactivator (tTA) system to control transgene expression by oral treatment with the broad-spectrum antibiotic doxycycline. Antibiotic treatment used for transgene control might have undesirable systemic effects, including the potential to affect immune responses in the brain via changes in the gut microbiome. Recent work has shown that an antibiotic cocktail to perturb the gut microbiome can suppress microglial reactivity to brain amyloidosis in transgenic mouse models of Alzheimer's disease based on controlled overexpression of the amyloid precursor protein (APP). Here we assessed the impact of chronic low dose doxycycline on gut microbiome diversity and neuroimmune response to systemic LPS challenge in a tTA-regulated model of Alzheimer's amyloidosis. We show that doxycycline decreased microbiome diversity in both APP transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite this change in microbiome composition, dox treatment had minimal effect on transcriptional signatures in the brain, both at baseline and following acute LPS challenge. Our findings suggest that central neuroinflammatory responses may be less affected by dox at doses needed for transgene control than by antibiotic cocktail at doses used for microbiome manipulation.
Project description:The understanding of the effects of compounds on the gut microbiome is limited and in particular we don’t know whether structurally similar compounds have similar or distinct effects on the gut microbiome. Here we selected berberine (BBR), an isoquinoline quaternary alkaloid, and sixteen structural analogues, and evaluated their effects on in vitro cultured individual gut microbiomes. The responses of the individual microbiomes were evaluated by metaproteomic profiles and by assessing butyrate production. BBR and eight analogues led to changes in proteins involved in microbial defense and stress responses, and enrichment of proteins from Verrumicrobia, Proteobacteria and Bacteroides phyla. It also led to a decrease in proteins from the Firmicutes phylum and its Clostridiales order which correlated to decrease proteins involved in the butyrate production pathway and butyrate concentration. Three of the compounds, Sanguinarine, Chelerythrine and Ethoxysanguinarine activated bacterial protective mechanisms, enriched Proteobacteria, increased opacity proteins and markedly reduced butyrate production. Dihydroberberine had a similar function to BBR in enriching the Akkermansia genus. In addition, it showed less overall adverse impacts on the functionality of the gut microbiome, including a better maintenance of the butyrate level. Our study shows that ex vivo microbiome assay can assess differential regulating effects of compounds with subtle differences and reveals that compound analogues can have distinct effects on the microbiome.
Project description:Gut-brain connections monitor the intestinal tissue and its microbial and dietary content1, regulating both intestinal physiological functions such as nutrient absorption and motility2,3, and brain–wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microbes and relay this information to central nervous system (CNS) areas that, in turn, regulate gut physiology4. We characterized the influence of the microbiota on enteric–associated neurons (EAN) by combining gnotobiotic mouse models with transcriptomics, circuit–tracing methods, and functional manipulation. We found that the gut microbiome modulates gut–extrinsic sympathetic neurons; while microbiota depletion led to increased cFos expression, colonization of germ-free mice with short-chain fatty acid–producing bacteria suppressed cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling, and anterograde tracing identified a subset of distal intestine-projecting vagal neurons positioned to play an afferent role in microbiota–mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identified brainstem sensory nuclei activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota–dependent control of gut extrinsic sympathetic activation through a gut-brain circuit.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. The results were used to demonstarte the usefulness of applying HuMiChip to human microbiome studies.
Project description:The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid metabolism, concomitant with altered plasma and/or fecal metabolite concentrations. Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics, whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and metabolites, systemic inflammation, gut permeability, and adipocyte size. Importantly, energy harvest, adipocyte size, and whole-body insulin sensitivity were not altered at 8-week follow-up, despite a still considerably altered microbial composition, indicating that interference with adult microbiota by 7-day antibiotic treatment has no clinically relevant impact on metabolic health in obese humans. This randomized, placebo-controlled, double-blind study had a 3-armed parallel design. Overweight/obese participants were randomized to oral intake of amoxicillin, vancomycin or placebo for 7 consecutive days. After an overnight fast, subcutaneous adipose tissue biopsies were taken that were subjected to gene expression profiling by array.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
Project description:The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1β), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.
Project description:Epithelial Ovarian Cancer (EOC) is the leading cause of gynecologic cancer death. Despite many patients achieving remission with first-line therapy, up to 80% of patients will recur and require additional treatment. Retrospective clinical analysis of OC patients indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. We assessed whether antibiotic (ABX) therapy would impact growth of EOC and sensitivity to cisplatin in murine models. Immune competent or compromised mice were given control or ABX containing water (metronidazole, ampicillin, vancomycin, and neomycin) before being intraperitoneally injected with murine EOC cells. Stool was collected to confirm microbiome disruption and tumors were monitored, and cisplatin therapy was administered weekly until endpoint. EOC tumor-bearing mice demonstrate accelerated tumor growth and resistance to cisplatin therapy in ABX treated compared with nonABX treatment. Stool analysis indicated most gut microbial species were disrupted by ABX treatment except for ABX resistant bacteria. To test for role of the gut microbiome, cecal microbiome transplants (CMTs) of microbiota derived from ABX or nonABX treated mice were used to recolonize the microbiome of ABX treated mice. nonABX cecal microbiome was sufficient to ameliorate the chemoresistance and survival of ABX treated mice indicative of a gut derived tumor suppressor. Mechanistically, tumors from ABX treated compared to nonABX treated mice contained a high frequency of cancer stem cells that were augmented by cisplatin. These studies indicate an intact microbiome provides a gut derived tumor suppressor and maintains chemosensitivity that is disrupted by ABX treatment.