Project description:Organoids are a valuable 3D model to study the differentiated functions of the human intestinal epithelium. They are a particularly powerful tool to measure epithelial transport processs in health and disease. Though biological assays such as organoid swelling and intraluminal pH measurements are well established, their underlying functional genomics are not well characterized. Here we combine genome-wide analysis of open chromatin by ATAC-seq with transcriptome mapping by RNA-seq to define the genomic signature of human intestinal organoids (HIOs). These data provide an important tool for investigating key physiological and biochemical processes in the intestinal epithelium. We next compared the transcriptome and open chromatin profiles of HIOs with equivalent datasets from the Caco2 colorectal carcinoma line, which is an important 2D model of the intestinal epithelium. Our results define common features of the intestinal epithelium in HIO and Caco2 and further illustrate the cancer-associated program of the cell line. Generation of Caco2 organoids enabled interrogation of the molecular divergence of the 2D and 3D cultures. Over-represented motif analysis of open chromatin peaks identified Caudal Type Homeobox 2 (CDX2) as a key activating transcription factor in HIO, but not in monolayer cultures of Caco2. However, the CDX2 motif becomes overrepresented in open chromatin from Caco2 organoids, reinforcing the importance of this factor in intestinal epithelial differentiation and function. Intersection of the HIO and Caco2 transcriptomes further showed functional overlap in pathways of ion transport and tight junction integrity among others. These data make an important contribution to understanding human intestinal organoid biology.
Project description:Organoids are a valuable 3D model to study the differentiated functions of the human intestinal epithelium. They are a particularly powerful tool to measure epithelial transport processs in health and disease. Though biological assays such as organoid swelling and intraluminal pH measurements are well established, their underlying functional genomics are not well characterized. Here we combine genome-wide analysis of open chromatin by ATAC-seq with transcriptome mapping by RNA-seq to define the genomic signature of human intestinal organoids (HIOs). These data provide an important tool for investigating key physiological and biochemical processes in the intestinal epithelium. We next compared the transcriptome and open chromatin profiles of HIOs with equivalent datasets from the Caco2 colorectal carcinoma line, which is an important 2D model of the intestinal epithelium. Our results define common features of the intestinal epithelium in HIO and Caco2 and further illustrate the cancer-associated program of the cell line. Generation of Caco2 organoids enabled interrogation of the molecular divergence of the 2D and 3D cultures. Over-represented motif analysis of open chromatin peaks identified Caudal Type Homeobox 2 (CDX2) as a key activating transcription factor in HIO, but not in monolayer cultures of Caco2. However, the CDX2 motif becomes overrepresented in open chromatin from Caco2 organoids, reinforcing the importance of this factor in intestinal epithelial differentiation and function. Intersection of the HIO and Caco2 transcriptomes further showed functional overlap in pathways of ion transport and tight junction integrity among others. These data make an important contribution to understanding human intestinal organoid biology.
Project description:Bulk ATAC-seq was performed on human, chimpanzee, bonobo, and macaque stem cell-derived cerebral organoids. ATAC-seq was performed on day 60 (2 months old) and day 120 (4 months old) cerebral organoids.
Project description:This study used snATAC-seq to profile Chromatin accessibility in 26 day-old iPSC-derived kidney organoids, treated with TGFB1, the EzH2 inhibitor GSK343, a combination of both or a vehicle control for 48 hours (days 24-26) before harvesting. 2 organoids per condition were pooled and dissociated using a cold-active protease. Nuclei were extracted and profiled using the 10X Genomics Single-cell ATAC reagent kit v1.1. Libraries were sequenced using paired-end reads on an Illumina NovaSeq 6000. Initial processing was performed using CellRanger ATAC v1.2.0 (10X Genomics).
Project description:Single cell ATAC-seq (scATAC-seq) was performed on macaque embryonic stem cell-derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed on bonobo induced pluripotent stem cells (iPSC) derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid) and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of human pluripotent stem cells to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of chimpanzee induced pluripotent stem cells (iPSC) to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).