Project description:The hypothesis that increased fitness within a selective environment must be accompanied by a loss of fitness in other non-selective environments leads to the notion of evolutionary tradeoffs. Experimental evolution provides an approach to test the existence of evolutionary tradeoffs, characterize their general quality, and reveal their genetic origins. To examine the underlying mechanism for a fitness trade-off, we constructed the evolutionary trajectories of Escherichia coli K-12 at increasing temperatures up to 45.3°C, and found diverging mutational histories that led to adaptive phenotypes with and without fitness trade-offs at low temperatures. We identified genetic changes in cellular respiration, iron metabolism and methionine biosynthesis that regulated gene expression to achieve thermal adaptation and determined the presence and absence of a fitness trade-off. Our results suggested that evolutionary trade-off could be generated by a regulatory protein mutation that was beneficial in the selective conditions but forced suboptimal proteome allocation under non-selective environments.
Project description:Exploring molecular details of carbon utilization trade-offs in galactose-evolved yeast Adaptively evolved yeast mutants on galactose for around 400 generations showed diminished growth and carbon uptake rates on glucose. Genome-scale approaches were applied to characterize the molecular genetic basis of these trade-offs in carbon source utilization. Engineered mutants showing trade-offs in a specific carbon uptake rate between both carbons were used as controls. The transcriptional responses of the evolved mutants were almost identical during growth on both carbon sources. These carbon-independent conserved patterns were clearly observed in specific pathways and genes. Up-regulation of PGM2, a confirmed beneficial genetic change for improving galactose utilization was preserved on both carbons. In addition, HXK1, GLK1 and genes involved in reserve carbohydrate metabolism were up-regulated, while HXK2 was down-regulated. Genes that have a transcription factor binding site for Gis1p, Rph1p, Msn2/4p and Nrg1p were up-regulated. These results indicated changes in the metabolic pathways involved in metabolism of both carbons and in nutrient signaling pathway. The concentration profile of trehalose and glycogen supported these findings. Mutations in RAS2 and ERG5 genes were selected because of their beneficial and neutral effect on galactose utilization, respectively in our previous study. Site-directed mutants containing galactose-beneficial mutations in RAS2 only resulted in a significant decrease in glucose utilization. Integration of all these analyses clearly suggest an antagonistic pleiotropic trade-off in carbon source utilization caused by changes in regulatory region, and we hereby demonstrate how systems biology can be used to gain insight into evolutionary processes at the molecular level. Yeast galactose evolved mutants having improved galactose availability were grown on aerobic batch with glucose as carbon source
Project description:Exploring molecular details of carbon utilization trade-offs in galactose-evolved yeast Adaptively evolved yeast mutants on galactose for around 400 generations showed diminished growth and carbon uptake rates on glucose. Genome-scale approaches were applied to characterize the molecular genetic basis of these trade-offs in carbon source utilization. Engineered mutants showing trade-offs in a specific carbon uptake rate between both carbons were used as controls. The transcriptional responses of the evolved mutants were almost identical during growth on both carbon sources. These carbon-independent conserved patterns were clearly observed in specific pathways and genes. Up-regulation of PGM2, a confirmed beneficial genetic change for improving galactose utilization was preserved on both carbons. In addition, HXK1, GLK1 and genes involved in reserve carbohydrate metabolism were up-regulated, while HXK2 was down-regulated. Genes that have a transcription factor binding site for Gis1p, Rph1p, Msn2/4p and Nrg1p were up-regulated. These results indicated changes in the metabolic pathways involved in metabolism of both carbons and in nutrient signaling pathway. The concentration profile of trehalose and glycogen supported these findings. Mutations in RAS2 and ERG5 genes were selected because of their beneficial and neutral effect on galactose utilization, respectively in our previous study. Site-directed mutants containing galactose-beneficial mutations in RAS2 only resulted in a significant decrease in glucose utilization. Integration of all these analyses clearly suggest an antagonistic pleiotropic trade-off in carbon source utilization caused by changes in regulatory region, and we hereby demonstrate how systems biology can be used to gain insight into evolutionary processes at the molecular level.
Project description:The evolutionary transition of multicellular life initially involves growth in groups of undifferentiated cells followed by differentiation into soma and germ-like cells. This is facilitated by trade-offs between traits determining survival and reproduction, favoring the coexistence of cells with extreme trait values and a convex trade-off curve as the multicellular state dominates. However, these transitions remain poorly characterized at the ecological and genetic level. Here, we studied the evolution of cell groups in ten isogenic lines of the unicellular green algae Chlamydomonas reinhardtii with prolonged exposure to a rotifer predator. We confirmed that this trait was heritable and characterized by a convex trade-off curve between reproduction and survival. Identical mutations evolved in all cell group isolates which were linked to survival and reducing associated cell costs. Overall, we show that just 500 generations of predator selection is sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome.
Project description:Escherichia coli arbitrarily encompasses facultative anaerobic, rod-shaped bacteria with defined respiratory and fermentative types of metabolism. The species diversification has been further advanced by atypical strains whose features deviate from the essential species-specific morphological and metabolic cut-off. The morphological cut-off is exemplified by bacterial filamentation. E. coli filamentation has been studied from two different perspectives: the first considers filamentation as a result of adaptive strategies and response to stress, while the second is based on findings from the cell division of E. coli’s conditional mutants. Another cut-off is represented by E. coli’s inability to use citrate as a sole carbon and energy source, which can be overcome either by saltational or long-term evolution. In this study, we compared two atypical E. coli strains that belong to the same neuroinvasive ecovar but exhibit either of the two phenotypes that deviate from the species features. While E. coli RS218 exists in the form of filaments incapable of growth on citrate, strain IHE3034 is represented as normal-sized bacteria able to aerobically ferment citrate in the presence of glucose; in this paper we show that these two phenotypes result from a bona fide trade-off. With the help of comparative proteomics and metabolomics, we discovered the proteome required for the upkeep of these phenotypes. The metabolic profiles of both strains reveal that under aerobic conditions, RS218 undergoes oxidative metabolism, while IHE3034 undergoes – anaerobic respiration. Finally, we show that the use of citrate and the filament formation are both linked in a trade-off occurring via a c-di-GMP-dependent phase-variation event.
Project description:Here, we investigate the genetic mechanisms that underlie thermal specialization of closely-related vibrios isolated from coastal water at the Beaufort Inlet (Beaufort, NC, USA). This location experiences large seasonal temperature fluctuations (annual range of ~20°C), and a clear seasonal shift in vibrio diversity has been observed (Yung et al. 2015). This previous study suggested that the mechanisms of thermal adaptation apparently differ based on evolutionary timescale: shifts in the temperature of maximal growth occur between deeply branching clades but the shape of the thermal performance curve changes on shorter time scales (Yung et al. 2015). The observed thermal specialization in vibrio populations over relatively short evolutionary time scales indicates that few genes or cellular processes may contribute to the differences in thermal performance between populations. In order to understand the molecular mechanisms that underlie adaptation to local thermal regimes in environmental vibrio populations, we employ genomic and transcriptomic approaches to examine transcriptomic changes that occur within strains grown at their thermal optima and under heat and cold stress. Moreover, we compare two closely-related strains with different laboratory thermal preferences to identify in situ evolutionary responses to different thermal environments in genome content and alleles as well as gene expression.