Project description:Characterization of ancestry-linked peptide variants in disease-relevant patient tissues represents a foundational step to connect patient ancestry with molecular disease pathogenesis. Nonsynonymous single nucleotide polymorphisms (SNPs) encoding missense substitutions within tryptic peptides exhibiting high allele frequencies in European, African, and East Asian populations, termed peptide ancestry informative markers (pAIMs), were prioritized from 1000 genomes. In silico analysis shows that as few as 20 pAIMs can determine ancestry proportions similarly to >260K SNPs (R2=0.9905). Multiplexed proteomic analysis of >100 human endometrial cancer cell lines and uterine leiomyoma (ULM) tissues combined resulted in the quantitation of 62 pAIMs that correlate with self-described race and genotype-confirmed patient ancestry. Candidates include a D451E substitution in GC vitamin D-binding protein previously associated with altered vitamin D levels in African and European populations. These efforts describe a generalized set of markers for proteoancestry assessment that will further support studies investigating the impact of ancestry on the human proteome and how this relates to the pathogenesis of uterine neoplasms.
Project description:Differences in microRNAs have not been well studied as potential mechanisms underlying the breast cancer disparity. A number of miRNAs were differentially expressed not only by tumor subtype but by ancestry, indicating differences in tumor biology of breast cancer between women of African and European ancestry. Findings may contribute to a better understanding of the biology of breast cancer disparities and help develop more targeted preventative and therapeutic strategies.
Project description:Study of genes that are differentially spliced and differentially expressed between African Americans and whites with lung squamous cell cancer. Despite racial disparities in lung cancer, the molecular landscape of lung cancer in patients of African ancestry remains underexplored. Population-related differences in alternative RNA splicing have not been explored. We identified differentially spliced genes and differentially expressed genes between lung squamous cell carcinoma from patients of West African and European ancestry.
Project description:Background: Differences in breast cancer outcomes according to race/ethnicity have been reported. Hispanic/Latino (H/L) populations are a genetically admixed and heterogeneous group, with variable fractions of European, Indigenous American and African ancestries. Some studies suggest that breast cancer-specific mortality is higher in U.S. Hispanic/Latinas compared to non-Hispanic Whites (NHW) even after adjustment for socioeconomic status and education. The molecular profile of breast cancer has been widely described in NHWs but equivalent knowledge is lacking in Hispanic/Latinas. We have previously reported that the most prevalent breast cancer intrinsic subtype in Colombian H/L women was Luminal B as defined by surrogate St. Gallen 2013 criteria. In this study we explored ancestry-associated differences in molecular profiles of Luminal B tumors among these highly admixed women. Methods: We performed whole-transcriptome RNA-seq analysis in 42 Luminal tumors (21 Luminal A and 21 Luminal B) from Colombian women. Genetic ancestry was estimated from a panel of 80 ancestry-informative markers (AIM). We categorized patients according to Luminal subtype and to the proportion of European and Indigenous American ancestry and performed differential expression analysis comparing Luminal B against Luminal A tumors according to the assigned ancestry groups. Results: We found 5 genes potentially modulated by genetic ancestry: ERBB2 (Fold Change = 2.367, padj < 0.01), GRB7 (Fold Change = 2.327, padj < 0.01), GSDMB (Fold Change = 1.723, padj < 0.01, MIEN1 (Fold Change = 2.195, padj < 0.01 and ONECUT2 (Fold Change = 2.204, padj < 0.01). In the replication set we found a statistical significant association between European ancestry fraction and the expression levels of ERBB2 (p = 0.02, B = 2.49) and ONECUT2 (p = 0.04, B = -4.87). We also observed statistical significant associations for ERBB2 expression with Indigenous American ancestry (p < 0.001, B = 3.82). This association was not biased by the distribution of HER2+ tumors among the groups analyzed. Conclusions: Our results suggest that genetic ancestry in Hispanic/Latina women might modify ERBB2 gene expression in Luminal tumors. Further analyses are needed to confirm these findings and explore their prognostic value.