Project description:Origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition was further examined using the recently developed RumenBactArray.
2014-10-23 | GSE62624 | GEO
Project description:Composition of bacterial and archaeal communities in oil reservoir
| PRJNA624800 | ENA
Project description:archaeal community in oil
| PRJNA714527 | ENA
Project description:Bacterial and archaeal composition of offshore oilfield samples
Project description:Background: Idiopathic Chronic Diarrhea (ICD) is a common cause of morbidity and mortality among juvenile rhesus macaques. Characterized by chronic inflammation of the colon and repeated bouts of diarrhea, ICD is largely unresponsive to medical interventions including corticosteroid, antiparasitic and antibiotic treatments. Although ICD is accompanied by large disruptions in the composition of the commensal gut microbiome, no single pathogen has been concretely identified as responsible for the onset and continuation of the disease. Results: Fecal samples were collected from twelve ICD-diagnosed macaques and twelve age and sex-matched controls. RNA was extracted for metatranscriptomic analysis of species and activity within the gut microbiome. Using SAMSA2, these samples were contrasted to identify shifts both in overall organism activity and functional activity. Bacterial, fungal, archaeal, protozoan, and macaque (host) transcripts were simultaneously assessed. ICD-afflicted animals were characterized by increased activity of known bacterial pathogens and by decreased activity of archaeal methanogens. Interestingly, known fungal opportunists were not increased in ICD, nor were the usual enteric protozoans, although Trichomonas activity is up-regualted. Known mucin degrading organisms and mucin-degrading enzymes were up-regulated in the fecal microbiomes of ICD-afflicted animals. Assessment of colon sections using immunohistochemistry confirmed differential mucin composition between healthy control and ICD animals. Finally, assessment of host-derived transcripts confirms colonic inflammation and suggests that the lumen is infiltrated by granulocytes. Conclusions: The simultaneous profiling of bacterial, fungal, archaeal, protozoan, and macaque transcripts from stool samples suggests that ICD of rhesus macaques is associated with increased pathogen activity and altered mucin degradation.
2019-03-09 | GSE108572 | GEO
Project description:Bacterial community composition in urban stormwater samples
| PRJNA471531 | ENA
Project description:V6 Bacterial community composition in river samples
Project description:Persistent mucosal inflammation and microbial infection are characteristic of Chronic Rhinosinusitis (CRS). Though mucosal microbiota dysbiosis is a characteristic feature of other chronic inflammatory diseases, the relationship between sinus microbiota composition and CRS is unknown. Here we demonstrate, using comparative microbiome profiling of a cohort of CRS patients and healthy subjects, that the sinus microbiota of CRS patients exhibit significantly reduced bacterial diversity. Characteristic of this community collapse is the depletion of multiple, phylogenetically distinct, Lactic Acid Bacteria and the concomitant increase in relative abundance of a single species, Corynebacterium tuberculostearicum. Recapitulating the conditions observed in our human cohort in a murine model confirmed the pathogenic potential of C. tuberculostearicum and the critical necessity for a replete mucosal microbiota to protect against this species. Moreover, we provide evidence that Lactobacillus sakei, identified from our comparative microbiome analyses as a potentially protective species, affords defense against C. tuberculostearicum sinus infection, even in the context of a depleted sinus bacterial community. These studies demonstrate that sinus mucosal health is highly dependent on the composition of the resident microbiota, and identifies a new sino-pathogen and a strong bacterial candidate for therapeutic intervention. A total of 14 samples were profiled for microbiome composition: 7 from non-sinusitis patients, and 7 from patients with clinically diagnosed chronic sinusitis.
Project description:Samples of oil and production water were collected from five wells of the Qinghai Oilfield, China, and subjected to GeoChip hybridization experiments for microbial functional diversity profiling. Unexpectedly, a remarkable microbial diversity in oil samples, which was higher than that in the corresponding water samples, was observed, thus challenging previously believed assumptions about the microbial diversity in this ecosystem. Hierarchical clustering separated oil and water samples, thereby indicating distinct functional structures in the samples. Genes involved in the degradation of hydrocarbons, organic remediation, stress response, and carbon cycling were significantly abundant in crude oil, which is consistent with their important roles in residing in oil. Association analysis with environmental variables suggested that oil components comprising aromatic hydrocarbons, aliphatic hydrocarbons, and a polar fraction with nitrogen-, sulfur-, and oxygen-containing compounds were mainly influential on the structure of the microbial community. Furthermore, a comparison of microbial communities in oil samples indicated that the structures were depth/temperature-dependent. To our knowledge, this is the first thorough study to profile microbial functional diversity in crude oil samples.