Project description:In the presented study, in order to unravel gut microbial community multiplicity and the influence of maternal milk nutrients (i.e., IgA) on gut mucosal microbiota onset and shaping, a mouse GM (MGM) was used as newborn study model to discuss genetic background and feeding modulation on gut microbiota in term of symbiosis, dysbiosis and rebiosis maintenance during early gut microbiota onset and programming after birth. Particularly, a bottom-up shotgun metaproteomic approach, combined with a computational pipeline, has been compred with a culturomics analysis of mouse gut microbiota, obtained by MALDI-TOF mass spectrometry (MS).
Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
Project description:Besides promoting inflammation by mobilizing lipid mediators, secreted phospholipase A2 group IIA (sPLA2-IIA) prevents bacterial infection by degrading bacterial membranes. Here we show that despite the restricted intestinal expression of sPLA2-IIA in BALB/c mice, its genetic deletion leads to amelioration of cancer and exacerbation of psoriasis in distal skin. Intestinal expression of sPLA2-IIA is reduced after antibiotics treatment or under germ-free conditions, suggesting its upregulation by gut microbiota. Metagenome, transcriptome and metabolome analyses have revealed that sPLA2-IIA deficiency alters the gut microbiota, accompanied by notable changes in the intestinal expression of genes related to immunity and metabolism as well as the levels of various blood metabolites and fecal bacterial lipids, suggesting that sPLA2-IIA contributes to shaping of the gut microbiota. The skin phenotypes in Pla2g2a–/– mice are lost when they are co-housed with littermate wild-type mice, resulting in mixing of the microbiota between the genotypes, or when they are housed in a more stringent pathogen-free facility, where Pla2g2a expression in wild-type mice is low and the gut microbial compositions in both genotypes are nearly identical. Thus, our results highlight a new aspect of sPLA2-IIA as a modulator of gut microbiota, perturbation of which affects distal skin responses.
2022-01-01 | GSE182283 | GEO
Project description:The effect of host genetics factors on shaping pig gut microbiota
Project description:The gut microbiota affects remote organ functions but its impact on organotypic endothelial cell (EC) transcriptomes remains unexplored. The liver endothelium encounters microbiota-derived signals and metabolites via the portal circulation. To pinpoint how gut commensals affect the hepatic sinusoidal endothelium, a magnetic cell sorting protocol, combined with fluorescence activated cell sorting, was used to analyze the transcriptome of hepatic sinusoidal ECs from germ-free (GF) and conventionally-raised (CONV-R) mice by RNA-sequencing. This resulted in a comprehensive map of microbiota-regulated hepatic EC-specific transcriptome profiles. Gene Ontology analysis revealed that several functional processes in the hepatic endothelium were influenced. The absence of a microbiota influenced the expression of genes involved in cholesterol flux and angiogenesis. Specifically, genes functioning in hepatic endothelial sphingosine matabolism and the sphingosine-1-phosphate pathway showed a drastically increased expression in the GF state. Our analyses reveal a prominent role for the microbiota in shaping the transcriptional landscape of the hepatic endothelium.
Project description:Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, immune responses, and communicating with the environment. Gut microbiota can be affected by some external factors such as foods, temperature, and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops all over the world. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed the S. frugiperda with the antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb the gut microbiota, and further examined the effect of dysbiosis in gut microbiota on the gene expression of S. frugiperda by RNA sequencing. We found the composition and diversity of the gut bacterial community were changed in S. frugiperda after antibiotics treatmen, and the expression of genes related to energy and metabolic process were affected after antibiotics exposure in S. frugiperda. Our work will help understand the role of gut microbiota in insects.
Project description:Intestinal innate lymphoid cells (ILCs) contribute to the protective immunity and homeostasis of the gut, and the microbiota are critically involved in shaping ILC function. However, the role of the gut microbiota in regulating ILC development and maintenance still remains elusive. Here, we identified opposing effects on ILCs by two Helicobacter species, Helicobacter apodemus and Helicobacter typhlonius, isolated from immunocompromised mice. We demonstrated that the introduction of both Helicobacter species activated ILCs and induced gut inflammation; however, these Helicobacter species negatively regulated RORγt+ Group 3 ILCs (ILC3s), especially T-bet+ ILC3s, and diminished their proliferative capacity. Thus, these findings underscore a previously unknown dichotomous regulation of ILC3s by Helicobacter species, and may serve as a model for further investigations to elucidate the host-microbe interactions that critically sustain the maintenance of intestinal ILC3s.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series