Project description:We investigated a contaminant-degrading microbial community by sequencing total RNA (without rRNA depletion) from microcosms containing sediment from a hypoxic contaminated aquifer fed with isotopically labeled toluene.
Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
2017-01-12 | GSE93419 | GEO
Project description:Microbial community analysis provides insights into the effects of tetrahydrofuran on 1,4-dioxane biodegradation
Project description:Mycobacterium dioxanotrophicus PH-06 can degrade 1,4-dioxane (dioxane), which is a groundwater contaminant of emerging concern. In order to find the genes involved in dioxane degradation. RNA sequencing was first used to investigate gene expression levels of PH-06 during growth on two different carbon sources (dioxane and glucose). The sequencing shows that a monooxygenase gene cluster was upregulated when treated with dioxane relative to glucose.
Project description:We evaluated liver tissues of B6D2F1/Crl mice exposed to 0, 40, 200, 600, 2000, or 6000 ppm 1,4-dioxane in drinking water for 7, 28, or 90 days in support of an investigation of the mode of action for 1,4-dioxane-induced murine liver tumors. TempO-Seq technology was used to measure global hepatic gene expression. Exposure-induced transcriptional responses increased by dose and exposure duration, with few differentially expressed genes at 40 and 200 ppm regardless of exposure duration. Pathway enrichment analysis identified significant perturbations in pathways associated with xenobiotic metabolism, complement and coagulation cascades and fatty acid metabolism in 600, 2000, and 6000 ppm groups at all timepoints compared to time-matched control groups. A significant transcriptomic proliferative response was only observed in 6000 ppm exposed mice at 90 days. Differential gene expression and pathway enrichment analysis results suggest 600 ppm as a potential threshold concentration for hepatic transcriptomic response to 1,4-dioxane in female mice.