Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:Inhibition of the anaerobic digestion process through accumulation of volatile fatty acids (VFA) is a recurring problem which is the result of unbalanced growth between acidogenic bacteria and methanogens. A speedy recovery is essential for an establishment of a feasible economical biogas productions. Yet, little is known regarding the organisms participating in the recovery. In this study the organisms involved in the recovery were studied using protein-stable isotope probing (Protein-SIP) and mapping this data onto a binned metagenome. Under acetate-accumulated simulating conditions a formation of 13C-labeled CO2 and CH4 was detected immediately after the addition of [U-13C]acetate, indicative of a high turnover rate of acetate. Several labeled peptides were detected in protein-SIP analysis. These 13C-labeled peptides were mapped onto a binned metagenome for improved taxanomical classification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia and one Bacteroidetes. The organisms affiliating with Clostridia and Bacteroidetes all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis; indicating that these organisms are possible syntrophic acetate-oxidizing bacteria (SAOB) that can facilitate acetate consumption via syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms involved in specific pathways.
Project description:Meta-proteomics analysis approach in the application of biogas production from anaerobic digestion has many advantages that has not been fully uncovered yet. This study aims to investigate biogas production from a stable 2-stage chicken manure fermentation system in chemical and biological perspective. The diversity and functional protein changes from the 1st stage to 2nd stage is a good indication to expose the differential metabolic processes in anaerobic digestion. The highlight of identified functional proteins explain the causation of accumulated ammonia and carbon sources for methane production. Due to the ammonia stress and nutrient limitation, the hydrogenotrophic methanogenic pathway is adopted as indicative of meta-proteomics data involving the key methanogenic substrates (formate and acetate). Unlike traditional meta-genomic analysis, this study could provide both species names of microorganism and enzymes to directly point the generation pathway of methane and carbon dioxide in investigating biogas production of chicken manure.