Project description:We aim to demonstrate a central role for omega-3 derived autacoids, termed specialized pro-resolving mediators (SPM), in the differentiation and maturation of Tregs.
Project description:Current literature implicates arachidonic acid-derived leukotrienes and prostaglandins in the pathogenesis of chronic rhinosinusitis. However, other omega-3 and omega-6 derived lipid mediators, such as specialized pro-resolving mediators (SPMs), may also be important in chronic inflammatory disorders of the upper airway. We hypothesize that SPMs differ among CRS subtypes compared to controls and in relation to sinonasal microbiota. Ethmoid sinus tissue and middle meatal swabs were collected from a convenience sample of 66 subjects, including non-CRS controls, CRS with polyps (CRSwNP), and CRS without polyps (CRSsNP). Lipid mediator pathways were analyzed by liquid chromatography/tandem mass spectrometry. Bacterial taxa were profiled in parallel by 16S rRNA gene sequencing. Resolvin D2 was elevated in both CRSwNP (p = 0.00076) and CRSsNP (p = 0.030) compared with non-CRS controls. Lipoxin A4 was significantly increased in CRSwNP compared with CRSsNP (p = 0.000033) and controls (p = 0.044). Cigarette smoking was associated with significantly lower concentrations of several 15-lipoxygenase metabolites including resolvin D1 (p = 0.0091) and resolvin D2 (p = 0.0097), compared with never-smokers. Several of the lipid compounds also correlated with components of the sinonasal mucosal microbiota, including bacterial pathogens such as Pseudomonas aeruginosa. These data suggest that dysfunctional lipid mediator pathways in CRS extend beyond the traditional descriptions of leukotrienes and prostaglandins and include SPMs. Furthermore, dysregulated SPM signaling may contribute to persistent inflammation and bacterial colonization in CRS.
Project description:Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Project description:Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation - that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection.
Project description:ObjectiveResidual scarring after cleft lip repair surgery remains a challenge for both surgeons and patients and novel therapeutics are critically needed. The objective of this preclinical experimental study was to evaluate the impact of the methyl-ester of pro-resolving lipid mediator lipoxin A4 (LXA4-ME) on scarring in a novel rabbit model of cleft lip repair.MethodsA defect of the lip was surgically created and repaired in eight six-week old New Zealand white rabbits to simulate human cleft lip scars. Rabbits were randomly assigned to topical application of PBS (control) or 1 ug of LXA4-ME (treatment). 42 days post surgery all animals were euthanized. Photographs of the cleft lip area defect and histologic specimens were evaluated. Multiple scar assessment scales were used to compare scarring.ResultsAnimals treated with LXA4-ME exhibited lower Visual Scar Assessment scores compared to animals treated with PBS. Treatment with LXA4-ME resulted in a significant reduction of inflammatory cell infiltrate and density of collagen fibers. Control animals showed reduced 2D directional variance (orientation) of collagen fibers compared to animals treated with LXA4-ME demonstrating thicker and more parallel collagen fibers, consistent with scar tissue.ConclusionsThese data suggest that LXA4-ME limits scarring after cleft lip repair and improves wound healing outcomes in rabbits favoring the resolution of inflammation. Further studies are needed to explore the mechanisms that underlie the positive therapeutic impact of LXA4-ME on scarring to set the stage for future human clinical trials of LXA4-ME for scar prevention or treatment after cleft lip repair.
Project description:Regression of atherosclerosis is an important clinical goal, however the pathways that mediate the resolution of atherosclerotic inflammation and reversal of plaques are poorly understood. Regulatory T cells (Tregs) have been shown to be atheroprotective, however numbers of these immunosuppressive cells decrease with disease progression. Using multiple independent mouse models of atherosclerosis regression, we demonstrate that an increase in plaque Tregs is a common signature of regressing plaques. To test if Tregs are required for the resolution of atherosclerotic inflammation and plaque regression during lipid-lowering therapy, we combined CD25 monoclonal antibody (PC61 mAb)-mediated Treg depletion with single-cell RNA-sequencing of immune cells in the plaque and conventional analyses of atherosclerosis. Single cell RNA-sequencing revealed that Tregs from aortic plaques shared some similarity with splenic Tregs, but were distinct from skin and colon Tregs supporting recent findings of tissue-dependent Treg heterogeneity. Furthermore, Tregs from progressing plaques expressed markers of natural Tregs derived from the thymus, whereas Tregs in regressing plaques lacked Nrp1 and Helios expression, suggesting that they are induced in the periphery during lipid lowering. Treatment of atherosclerotic mice with PC61 mAb effectively depleted Tregs in the blood and peripheral tissues, including plaques, and blocked the regression of atherosclerosis induced by apoB anti-sense oligonucleotides. Morphometric analyses revealed that control antibody-treated mice showed a 40% decrease in plaque burden and macrophage content under regression conditions, whereas PC61 mAb-treated mice showed no change in plaque size or inflammatory cell content compared to baseline. Moreover, Treg depletion enhanced inflammatory signaling and blocked tissue reparative functions of macrophages in the regressing plaque, including M2-polarization, efferocytosis and sensing of specialized pro-resolving lipid mediators. Together, these data establish essential roles for Tregs in the resolution of atherosclerotic inflammation and plaque remodeling during regression.
Project description:A new genus of specialized pro-resolving mediators (SPM) which include several families of distinct local mediators (lipoxins, resolvins, protectins, and maresins) are actively involved in the clearance and regulation of inflammatory exudates to permit restoration of tissue homeostasis. Classic lipid mediators that are temporally regulated are formed from arachidonic acid, and novel local mediators were uncovered that are biosynthesized from ω-3 poly-unsaturated fatty acids, such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid. The biosynthetic pathways for resolvins are constituted by fatty acid lipoxygenases and cyclooxygenase-2 via transcellular interactions established by innate immune effector cells which migrate from the vasculature to inflamed tissue sites. SPM provide local control over the execution of an inflammatory response towards resolution, and include recently recognized actions of SPM such as tissue protection and host defense. The structural families of the SPM do not resemble classic eicosanoids (PG or LT) and are novel structures that function uniquely via pro-resolving cellular and molecular targets. The extravasation of inflammatory cells expressing SPM biosynthetic routes are matched by the temporal provision of essential fatty acids from circulation needed as substrate for the formation of SPM. The present review provides an update and overview of the biosynthetic pathways and actions of SPM, and examines resolution as an integrated component of the inflammatory response and its return to homeostasis via biochemically active resolution mechanisms.
Project description:DA and congenic R11 macrophages were stimulated with zymosan for 1 or 24 hours and pro-inflammatory mediators measured at mRNA level R11 macrophages had reduced pro-inflammatory mediators after stimulation