Project description:Transform faults are geological structures that interrupt the continuity of mid-ocean ridges and can act as dispersal barriers for hydrothermal vent organisms. In the equatorial Atlantic Ocean, it has been hypothesized that long transform faults impede gene flow between the northern and the southern Mid-Atlantic Ridge (MAR) and disconnect a northern from a southern biogeographic province. To test if there is a barrier effect in the equatorial Atlantic, we examined phylogenetic relationships of chemosynthetic bivalves and their bacterial symbionts from the recently discovered southern MAR hydrothermal vents at 5°S and 9°S. We examined Bathymodiolus spp. mussels and Abyssogena southwardae clams using the mitochondrial cytochrome c oxidase subunit I (COI) gene as a phylogenetic marker for the hosts and the bacterial 16S rRNA gene as a marker for the symbionts. Bathymodiolus spp. from the two southern sites were genetically divergent from the northern MAR species B. azoricus and B. puteoserpentis but all four host lineages form a monophyletic group indicating that they radiated after divergence from their northern Atlantic sister group, the B. boomerang species complex. This suggests dispersal of Bathymodiolus species from north to south across the equatorial belt. 16S rRNA genealogies of chemoautotrophic and methanotrophic symbionts of Bathymodiolus spp. were inconsistent and did not match the host COI genealogy indicating disconnected biogeography patterns. The vesicomyid clam Abyssogena southwardae from 5°S shared an identical COI haplotype with A. southwardae from the Logatchev vent field on the northern MAR and their symbionts shared identical 16S phylotypes, suggesting gene flow across the Equator. Our results indicate genetic connectivity between the northern and southern MAR and suggest that a strict dispersal barrier does not exist.
Project description:Spreading processes associated with slow-spreading ridges are a complex interplay of volcanic accretion and tectonic dismemberment of the oceanic crust, resulting in an irregular seafloor morphology made up of blocks created by episodes of intense volcanic activity or tectonic deformation. These blocks undergo highly variable evolution, such as tilts or dissection by renewed tectonic extension, depending on their positions with respect to the spreading axis, core complexes, detachment or transform faults. Here, we use near-seafloor magnetic and bathymetric data and seismic profiles collected over the TAG Segment of the Mid-Atlantic Ridge to constrain the tectonic evolution of these blocks. Our study reveals that the presence and evolution of oceanic core complexes play a key role in triggering block movements. The deep subvertical detachment fault roots on the plate boundary, marked by a thermal anomaly and transient magma bodies. Thermal and magmatic variations control the structure and morphology of the seafloor above the subhorizontal detachment surface, occasionally leading to relocating the detachment.
Project description:Deep-sea sediments (DSS) are one of the largest biotopes on Earth and host a surprisingly diverse microbial community. The harsh conditions of this cold environment lower the rate of natural attenuation, allowing the petroleum pollutants to persist for a long time in deep marine sediments raising problematic environmental concerns. The present work aims to contribute to the study of DSS microbial resources as biotechnological tools for bioremediation of petroleum hydrocarbon polluted environments. Four deep-sea sediment samples were collected in the Mid-Atlantic Ridge, south of the Azores (North Atlantic Ocean). Their autochthonous microbial diversity was investigated by 16S rRNA metabarcoding analysis. In addition, a total of 26 deep-sea bacteria strains with the ability to utilize crude oil as their sole carbon and energy source were isolated from the DSS samples. Eight of them were selected for a novel hydrocarbonoclastic-bacterial consortium and their potential to degrade petroleum hydrocarbons was tested in a bioremediation experiment. Bioaugmentation treatments (with inoculum pre-grown either in sodium acetate or petroleum) showed an increase in degradation of the hydrocarbons comparatively to natural attenuation. Our results provide new insights into deep-ocean oil spill bioremediation by applying DSS hydrocarbon-degrading consortium in lab-scale microcosm to simulate an oil spill in natural seawater.
Project description:Microbial community structure in natural environments has remained largely unexplored yet is generally considered to be complex. It is shown here that in a Mid-Atlantic Ridge hydrothermal vent habitat, where food webs depend on prokaryotic primary production, the surface microbial community consists largely of only one bacterial phylogenetic type (phylotype) as indicated by the dominance of a single 16S rRNA sequence. The main part of its population occurs as an ectosymbiont on the dominant animals, the shrimp Rimicaris exoculata, where it grows as a monoculture within the carapace and on the extremities. However, the same bacteria are also the major microbial component of the free-living substrate community. Phylogenetically, this type forms a distinct branch within the epsilon-Proteobacteria. This is different from all previously studied chemoautotrophic endo- and ectosymbioses from hydrothermal vents and other sulfidic habitats in which all the bacterial members cluster within the gamma-Proteobacteria.
Project description:In the dark ocean, the SAR324 group of Delta-proteobacteria has been associated with a chemolithotrophic lifestyle. However, their electron transport chain for energy generation and information system has not yet been well characterized. In the present study, four SAR324 draft genomes were extracted from metagenomes sampled from hydrothermal plumes in the South Mid-Atlantic Ridge. We describe novel electron transport chain components in the SAR324 group, particularly the alternative complex III, which is involved in energy generation. Moreover, we propose that the C-type cytochrome, for example the C553, may play a novel role in electron transfer, adding to our knowledge regarding the energy generation process in the SAR324 cluster. The central carbon metabolism in the described SAR324 genomes exhibits several new features other than methanotrophy e.g. aromatic compound degradation. This suggests that methane oxidation may not be the main central carbon metabolism component in SAR324 cluster bacteria. The reductive acetyl-CoA pathway may potentially be essential in carbon fixation due to the absence of components from the Calvin-Benson cycle. Our study provides insight into the role of recombination events in shaping the genome of the SAR324 group based on a larger number of repeat regions observed, which has been overlooked thus far.