Project description:To further understand the mechanism approach to occlusive vein grafts, we have employed RNA-seq to identify key genes in occlusive venin grafts following CABG in human. The occluded vein graft and intraoperative spare great saphenous vein of patients undergoing clinical re-coronary artery bypass grafting were obtained for RNA-seq. The sequencing results were cleaned and bioinformatics annlysis was conducted by using WGCNA and a variety of online databases and software. The key genes or proteins affecting the occurrence of vein graft restenosis were screened out(ITGB2), and the expression level of the target genes or proteins was verified by real-time PCR and Western blot. And to further learn the effect of ITGB2 in human primary venous smooth muscle cells, ITGB2 gene was silenced by SiRNA. The effect of ITGB2 silencing on proliferation, migration and invasion of venous smooth muscle cells after PDGF-BB-stimulation were detected by Edu assay, scrathch experiment and transwell experiment. And Edu assay showed that ITGB2 silencing could inhibit the proliferation of PDGF-BB sitmulated smooth muscle cells. Scratch assay showed that ITGB2 silencing inhibited the migration of PDGF-BB stimulated smooth muscle cells. Transwell assay showed that ITGB2 silencing significantly inhibited the invasion of PDGF-BB stimulated smooth muscle cells. It is indicated that ITGB2 was the key gene in vein graft restenosis,and may be the potential treatment target in restenosis patients.
Project description:Smooth muscle cells play a critical role in multiple cardiovascular diseases. Sca1+ cells are believed to be smooth muscle progenitors. However, the exact identity and the role of Sca1+ cells in vascular regeneration remains unclear.Here we performed single cell RNA sequencing to identify the mechanism underlying Sca1+ cells differentiate into smooth muscle cells.
Project description:Deep vein thrombosis (DVT) is a common clinical problem, but its cellular and molecular mechanisms remain incompletely understood. We performed single-cell RNA sequencing (scRNA-seq) on the vein wall of mouse inferior vena cava (IVC) ligation model of deep vein thrombosis (DVT), to analyze the transcriptomic changes in the vein wall during acute venous thrombosis.
Project description:Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Collectively, we find that vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies.
Project description:Development and pre-clinical testing of new cancer therapies is limited by the scarcity of in vivo models that authentically reproduce tumor growth and metastatic progression. We report new models for breast tumor growth and metastasis, in the form of transplantable tumors derived directly from individuals undergoing treatment for breast cancer. These tumor grafts represent the diversity of human breast cancer and maintain essential features of the original tumors, including metastasis to specific sites. Co-engraftment of primary human mesenchymal stem cells maintains phenotypic stability of the grafts and increases tumor growth by promoting angiogenesis. We also report that tumor engraftment is a prognostic indicator of disease outcome for newly diagnosed women; orthotopic breast tumor grafting marks a step toward individualized models for tumor growth, metastasis, and prognosis. This bank of tumor grafts also serves as a publicly available resource for new models in which to study the biology of breast cancer. Single replicates of genomic DNA from 12 human breast cancer tumors and xenografts of those tumors in immunodeficient mice were hybridized to Affymetrix Human SNP 6.0 genotyping arrays.