Project description:Analysis of epigenetic changes of pericytes after ischemia-reperfusion renal injury. The hypothesis tested in the present study was that epigenetic change develope in pericytes after acute kidney injury. This phenotype change would cause pericyte to be more proliferative and profibrotic. Results provide important information of the epigenetic change of pericytes, such as specific mechano-responsive genes, up-regulated specific proliferative and profibrotic functions.
Project description:To investigate the mechanism by which ischemic preconditioning (IPC) produces tissue tolerance to renal ischemia reperfusion injury in a pig model 15 female Yorkshire pigs were divided into three groups: 1: no IPC and 90 minutes warm ischemia; 2: remote IPC with an early window followed by 90 min warm ischemia; 3: remote IPC with a late window followed by warm ischemia 24 hrs later. Kidney tissues were obtained after 72 hours.
Project description:To investigate the mechanism by which ischemic preconditioning (IPC) produces tissue tolerance to renal ischemia reperfusion injury in a pig model
Project description:Time course experiments involving bilateral renal ischemia reperfusion injury (IRI) in C57BL/6J mice (0 hr control, 20 min bilateral ischemia without reperfusion, 4, 16, 24, 36, 48, and 72 hrs post IRI). This dataset also includes IRI at 48 hrs and 72 hrs in Azin1 A-to-I locked and Azin1 A-to-I uneditable mice.
Project description:RNA microarray was performed to evaluate the efficacy of silicon nano-particles on renal transcriptomes of rats against ischemia reperfusion injury. We compared the transcriptomes of ischemia reperfusion injury model rats with or without oral administration of silicon nano-particles. We also tried to check whether the oral silicon nano-particles intake downregulated the biological processes related to oxidative stress.
Project description:Ischemia-reperfusion injury (IRI) is a well-known model for acute kidney injury (AKI).
We applied proteomic analysis to detect membrane proteins from IRI mouse kidneys. The analysis set are composed of negative control (sham operation), samples of 4-hour after IRI, and samples of 8-hour IRI.
Project description:To study the protective effects of preoperative fasting against renal ischemia-reperfusion injury, young-lean as well as aged overweight mice were subjected to three days of fasting or ad libitum food consumption, and gene expressions in kidneys of male mice were analyzed 19 samples (5 young control, 4 young fasted, 5 aged control, 5 aged fasted), each from individual mice
Project description:Macrophages are a heterogeneous cell type implicated in injury, repair, and fibrosis after AKI, but the macrophage population associated with each phase is unclear.results of this study in a renal ischemia-reperfusion injury model allow phenotype and function to be assigned to CD11b+/Ly6C+ monocyte/macrophage populations in the pathophysiology of disease after AKI. we used a renal bilateral ischemia-reperfusion injury mouse model to identify unique monocyte/macrophage populations by differential expression of Ly6C in CD11b+ cells and to define the function of these cells in the pathophysiology of disease on the basis of microarray gene signatures and reduction strategies