Project description:SS18-SSX fusion proteins play a central role in synovial sarcoma development, however, genetic network and mechanisms of synovial sarcomagenesis remain largely unknown. To clarify such unknown mechanisms, we have established a new ex vivo mouse model for synovial sarcoma, using retrovirus-mediated gene transfer of SS18-SSX1 to mouse embryonic mesenchymal cells followed by subcutaneous transplantation into nude mice. This approach successfully induced subcutaneous tumors in 100% of recipients, showing invasive proliferation of short spindle tumor cells with occasional biphasic appearance. Cytokeratin expression was observed in epithelial components in tumors and expression of TLE1 and BCL2 was also shown. Gene expression profiling indicates modulation of the SWI/SNF pathway by introduction of SS18-SSX1 into mesenchymal cells, and upregulation of Tle1 and Atf2 in tumors. Collectively, these findings indicate the model exhibits typical phenotypes of human synovial sarcoma. Retroviral tagging of the tumor identified 15 common retroviral integration sites with the Dnm3 locus as the most frequent in 30 mouse synovial sarcomas. Up-regulation of micro RNAs miR-199a2 and miR-214 within the Dnm3 locus was observed. Co-introduction of SS18-SSX1 and miR-214 indeed accelerated sarcoma onset, indicating that miR-214 is a cooperative onco-miR in synovial sarcomagenesis. miR-214 functions in the cell non-autonomous manner, promoting cytokine gene expression such as Cxcl15/IL8. We have succeeded to generate a novel mouse model for human synovial sarcoma. As miR-214 overexpression in human synovial sarcoma was reported, our results underscore the important role of miR-214 in tumor development and disease progression. We used microarrays to detail the global program of gene expression in mouse synovial sarcoma and embryonic mesenchymal cells
Project description:Transcriptome comparisons by RNAseq of genetically engineered mouse models of synovial sarcoma, expressing SS18-SSX1 or SS18-SSX2 and having homozygous conditional genetic silencing of Pten or wildtype Pten.
Project description:We analyzed the effects of cellular context on the function of the synovial sarcoma-specific fusion protein, SS18-SSX, using human pluripotent stem cells containing the drug-inducible SS18-SSX gene. To investigate the cell-type-dependent effecfts of SS18-SSX, we performed gene expression profiling experiments. Comparison of global gene expressions of hPSCs, hPSC-NCCs, and hPSC-MSCs with or without the inductuion of SS18-SSX2
Project description:Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not β -catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking β -catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation. SS18SSX expressing C3H cells vs control: no replicates. WNT-stimulated C3H cells vs controls: 3 replicates per condition
Project description:Gene fusions arising from chromosomal translocations are key oncogenic drivers in soft tissue sarcomas but little is known about how they exert their oncogenic effects. Our study explores the molecular mechanisms by which the SS18-SSX fusion oncoprotein subverts epigenetic mechanisms of gene regulation to drive synovial sarcoma. Using functional genomics, we identify KDM2B – a histone demethylase and core component of a non-canonical Polycomb Repressive Complex 1 (PRC1.1) – as selectively required for sustaining synovial sarcoma cell transformation. SS18-SSX physically interacts with PRC1.1 and co-associates with SWI/SNF and KDM2B complexes on unmethylated CpG islands genome-wide. Via KDM2B, SS18-SSX binds and aberrantly activates expression of a series of developmentally regulated transcription factors that would otherwise be targets of polycomb-mediated repression, which is restored upon KDM2B depletion leading to irreversible mesenchymal differentiation. Thus, SS18-SSX de-regulates developmental programs to drive transformation by hijacking a transcriptional repressive complex to aberrantly activate gene expression.
Project description:Gene fusions arising from chromosomal translocations are key oncogenic drivers in soft tissue sarcomas but little is known about how they exert their oncogenic effects. Our study explores the molecular mechanisms by which the SS18-SSX fusion oncoprotein subverts epigenetic mechanisms of gene regulation to drive synovial sarcoma. Using functional genomics, we identify KDM2B – a histone demethylase and core component of a non-canonical Polycomb Repressive Complex 1 (PRC1.1) – as selectively required for sustaining synovial sarcoma cell transformation. SS18-SSX physically interacts with PRC1.1 and co-associates with SWI/SNF and KDM2B complexes on unmethylated CpG islands genome-wide. Via KDM2B, SS18-SSX binds and aberrantly activates expression of a series of developmentally regulated transcription factors that would otherwise be targets of polycomb-mediated repression, which is restored upon KDM2B depletion leading to irreversible mesenchymal differentiation. Thus, SS18-SSX de-regulates developmental programs to drive transformation by hijacking a transcriptional repressive complex to aberrantly activate gene expression.
Project description:Gene fusions arising from chromosomal translocations are key oncogenic drivers in soft tissue sarcomas but little is known about how they exert their oncogenic effects. Our study explores the molecular mechanisms by which the SS18-SSX fusion oncoprotein subverts epigenetic mechanisms of gene regulation to drive synovial sarcoma. Using functional genomics, we identify KDM2B – a histone demethylase and core component of a non-canonical Polycomb Repressive Complex 1 (PRC1.1) – as selectively required for sustaining synovial sarcoma cell transformation. SS18-SSX physically interacts with PRC1.1 and co-associates with SWI/SNF and KDM2B complexes on unmethylated CpG islands genome-wide. Via KDM2B, SS18-SSX binds and aberrantly activates expression of a series of developmentally regulated transcription factors that would otherwise be targets of polycomb-mediated repression, which is restored upon KDM2B depletion leading to irreversible mesenchymal differentiation. Thus, SS18-SSX de-regulates developmental programs to drive transformation by hijacking a transcriptional repressive complex to aberrantly activate gene expression.
Project description:We analyzed the effects of cellular context on the function of the synovial sarcoma-specific fusion protein, SS18-SSX, using human pluripotent stem cells containing the drug-inducible SS18-SSX gene. To investigate the cell-type-dependent effecfts of SS18-SSX, we performed gene expression profiling experiments.
Project description:Synovial sarcoma (SS) is defined by the hallmark SS18-SSX fusion oncoprotein, which renders BAF complexes aberrant in two manners: gain of SSX to the SS18 subunit and concomitant loss of BAF47 subunit assembly. Here we demonstrate that SS18-SSX globally hijacks BAF complexes on chromatin to activate a SS transcriptional signature we define using primary tumors and cell lines. Specifically, SS18-SSX retargets BAF complexes from enhancers to broad polycomb domains to oppose PRC2-mediated repression and activate bivalent genes. Upon suppression of SS18-SSX, reassembly of BAF47 restores enhancer activation, but is not required for proliferative arrest. These results establish a global hijacking mechanism for SS18-SSX on chromatin, and define the distinct contributions of two concurrent BAF complex perturbations.
Project description:Synovial sarcoma (SS) is defined by the hallmark SS18-SSX fusion oncoprotein, which renders BAF complexes aberrant in two manners: gain of SSX to the SS18 subunit and concomitant loss of BAF47 subunit assembly. Here we demonstrate that SS18-SSX globally hijacks BAF complexes on chromatin to activate a SS transcriptional signature we define using primary tumors and cell lines. Specifically, SS18-SSX retargets BAF complexes from enhancers to broad polycomb domains to oppose PRC2-mediated repression and activate bivalent genes. Upon suppression of SS18-SSX, reassembly of BAF47 restores enhancer activation, but is not required for proliferative arrest. These results establish a global hijacking mechanism for SS18-SSX on chromatin, and define the distinct contributions of two concurrent BAF complex perturbations.