Project description:Environmental isolates of Vibrio cholerae from California coastal water compared to reference strain N16961. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: genotyping_design; array CGH
Project description:Although many members of the genus Vibrio are known to inhabit the marine photic zone, an understanding of the influence of light on the molecular physiology of Vibrio spp. has largely been neglected. To begin to characterize the photophysiology of one such Vibrio sp. (Vibrio campbellii ATCC strain BAA-1116) we used microarray-based expression profiling to compare the transcriptomes of illuminated versus dark cell cultures. Specficially, we compared the transcriptomes of wild type V. campbellii (STR) cells that were cultured in M9 minimal salts medium plus glucose under two conditions: (i) after 24 hours of continuous dark and (ii) after a 12 hour dark:12 hour light cycle (white light illumination at 54 µmol photons s-1 m-2). The results revealed a large photostimulon (differential expression of ~20% of the V. campbellii genome; adjusted p value < 0.0001) that surprisingly included ~75% of the type III secretion system (T3SS) genes which were found to be 1.6 – 5.4X more abundant in illuminated cultures. These findings, which were confirmed by quantitative reverse transcription PCR and quantitative membrane proteomics, strongly suggest that the photostimulon of strain BAA-1116 includes the T3SS.
Project description:Temperature is a crucial environmental signal that govers the occurrence of Vibrio cholerae and cholera outbreaks. To understand how temperature impacts the transcriptome of V. cholerae we performed whole-genome level transcriptional profiling using custom microarrays on cells grown at human body temperature (37 C) then shifted to temperatures V. cholerae experience in the environment (15 C and 25 C).
Project description:Although many members of the genus Vibrio are known to inhabit the marine photic zone, an understanding of the influence of light on the molecular physiology of Vibrio spp. has largely been neglected. To begin to characterize the photophysiology of one such Vibrio sp. (Vibrio campbellii ATCC strain BAA-1116) we used microarray-based expression profiling to compare the transcriptomes of illuminated versus dark cell cultures. Specficially, we compared the transcriptomes of wild type V. campbellii (STR) cells that were cultured in M9 minimal salts medium plus glucose under two conditions: (i) after 24 hours of continuous dark and (ii) after a 12 hour dark:12 hour light cycle (white light illumination at 54 M-BM-5mol photons s-1 m-2). The results revealed a large photostimulon (differential expression of ~20% of the V. campbellii genome; adjusted p value < 0.0001) that surprisingly included ~75% of the type III secretion system (T3SS) genes which were found to be 1.6 M-bM-^@M-^S 5.4X more abundant in illuminated cultures. These findings, which were confirmed by quantitative reverse transcription PCR and quantitative membrane proteomics, strongly suggest that the photostimulon of strain BAA-1116 includes the T3SS. Five biological replicates of V. campbellii BAA-1116 (STR) were grown to log phase (200 rpm, 30M-BM-0C, 25 mL M9 minimal salts medium plus glucose in 125 mL baffled Erlenmeyer flasks) under continuous dark for 24 hours or under a 12 hour dark:12 hour light cycle (white light illumination at 54 M-BM-5mol photons s-1 m-2) and total RNA was extracted from 1.0E+9 cells. Messenger RNA was isolated from the total RNA extracts treated with DNase, labeled with biotin, fragmented and hybridized to V. campbellii BAA-1116 whole genome microarrays (520694F, Affymetrix).
Project description:VarS/A is one of the global factors regulating diverse aspects of metabolism and virulence of bacteria including pathogenic Vibrio spp. An experiment to identify VarS/A-regulon in V. vulnificus revealed that a putative LuxR-type transcriptional regulator was down-regulated in ΔvarA mutant. To investigate the roles of this regulatory cascade from VarS/A to a LuxR-type regulator in V. vulnificus, the target gene regulated by a LuxR-regulator was identified and its expression was characterized.