Project description:Understanding microbial community diversity is thought to be crucial for improving process functioning and stabilities of wastewater treatment systems. However, current studies largely focus on taxonomic groups based on 16S rRNA, which are not necessarily linked to functioning, or a few selected functional genes. Here we launched a study to profile the overall functional genes of microbial communities in three full-scale wastewater treatment systems. Triplicate activated sludge samples from each system were analyzed using a high-throughput metagenomics tool named GeoChip 4.2, resulting in the detection of 38,507 to 40,647 functional genes. A high similarity of 75.5% to 79.7% shared genes was noted among the nine samples. Moreover, correlation analyses showed that the abundances of a wide array of functional genes were associated with system performances. For example, the abundances of overall nitrogen cycling genes had a strong correlation to total nitrogen (TN) removal rates (r = 0.7647, P < 0.01). The abundances of overall carbon cycling genes were moderately correlated with COD removal rates (r = 0.6515, P < 0.01). Lastly, we found that influent chemical oxygen demand (COD inf) and total phosphorus concentrations (TP inf), and dissolved oxygen (DO) concentrations were key environmental factors shaping the overall functional genes. Together, the results revealed vast functional gene diversity and some links between the functional gene compositions and microbe-mediated processes.
Project description:Here we report a metatranscriptomic analysis of gene expression and regulation of “Candidatus Accumulibacter”-enriched lab-scale sludge during enhanced biological phosphorus removal (EBPR). Medium density oligonucleotide microarrays were generated with probes targeting most predicted genes hypothesized to be important for the EBPR phenotype. The objectives were to investigate which genes were expressed during EBPR and which genes were differentially expressed between the early stage of anaerobic and aerobic phases (defined as 15 min after acetate addition and 15 min after switching to aeration respectively).
Project description:The anaerobic digestion microbiomes has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and phenotypics, in their ability to reflect the full-scale anaerobic digestion microbiome. The phenotypic fingerprinting reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, β-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and phenotypic traits, yielded certain similar features yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, phenotypic fingerprinting is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.