Project description:FGF23 is a bone-derived hormone that mediates renal phosphate reabsorption and 1,25(OH)2 vitamin D metabolism via its required co-receptor alpha-Klotho (KL). The functional pathways guiding this hormone’s activity in kidney have not been studied extensively, and whether using other factors with overlapping signaling profiles to produce FGF23-like responses is unclear. To map FGF23-related genes, gene array and single-cell RNA sequencing were utilized on wild type mouse kidneys. After identifying Heparin-binding EGF-like growth factor (HBEGF) as an up-regulated gene in response to FGF23 delivery, KL-null and phosphate-deficient diet fed mouse models and in vitro experiments were utilized to further test HBEGF bioactivity in kidney. Gene array demonstrated that HBEGF was significantly up-regulated following FGF23 delivery to wild type (WT) mice. Next, mice injected with HBEGF had phenotypes consistent with partial FGF23-mimetic activity including robust induction of EGR1, and increased CYP24A1 mRNAs. Single cell RNA sequencing showed overlapping HBEGF and EGFR expression in the proximal tubule (PT), and KL expression in PT and distal tubule (DT) segments. In KL-null mice devoid of canonical FGF23 signaling, HBEGF injections significantly increased EGR1 and CYP24A, and correction of basally-elevated CYP27B1 was observed. In addition, mice placed on a phosphate deficient diet to suppress FGF23 had endogenously increased CYP27B1 mRNA, which was rescued in mice receiving HBEGF. In HEK293 renal epithelial cells, HBEGF and FGF23 increased CYP24A1 mRNA. Targeting pathways known to be downstream of FGF23 in kidney may help to control renal phosphate handling in diseases of altered FGF23 bioactivity.
Project description:One of the main regulators of phosphate homeostasis is fibroblast growth factor 23 (FGF23), secreted by osteocytes. The effects of organic versus inorganic dietary phosphate on this homeostasis is unclear. This study used MC3T3-E1 osteocyte-like cells to examine the transcriptomic responses to these phosphates. Most importantly, the expression and secretion of FGF23 was only increased in response to organic phosphate. Gene ontology terms related to a response to environmental change were only enriched in osteocytes treated with organic phosphate while osteocytes treated with inorganic phosphate were enriched for terms associated with regulation of cellular phosphate metabolism. Inhibition of MAPK signaling diminished the response of Fgf23 to organic phosphate, suggesting it activates FGF23. TGF-β signaling inhibition increased Fgf23 expression after the addition of organic phosphate, while the negative TGF-β regulator Skil decreased this response. In summary, the observed differential response of osteocytes to phosphate types may have consequences for phosphate homeostasis.
Project description:Fibroblast growth factor-23 (FGF23) is a bone-derived hormone that has recently received much attention due to its association with the progression of chronic kidney disease, cardiovascular disease, and associated mortality. Extracellular sodium ion concentration ([Na+]) plays a significant role in bone metabolism. Both hyponatremia (low serum [Na+]) and hypernatremia (high serum [Na+]) have been shown to affect bone remodeling. However, nothing is known about the impact of [Na+] on FGF23 production. Here, we show that elevated [Na+] (by +20 mM) suppressed FGF23 formation, whereas low [Na+] (by -20 mM) led to an increase in FGF23 synthesis in the osteoblast-like cell line UMR-106. Similar bidirectional changes in FGF23 were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. On the other hand, arginine vasopressin (AVP), which is often responsible for hyponatremia, did not affect FGF23 production. Next, comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low vs. high [Na+] revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9 mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these findings, in a pilot study, we found that human hyponatremic patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.
Project description:Fibroblast growth factor 23 (FGF23) is produced and secreted by osteocytes and is essential for maintaining phosphate homeostasis. One of the main regulators of FGF23, 1,25-dihydroxyvitamin D (1,25(OH)2D3), is primarily synthesized in the kidney from 25-hydroxyvitamin D (25(OH)D) by 1α-hydroxylase (encoded by CYP27B1). Hitherto, it is unclear whether osteocytes can convert 25(OH)D and thereby allow for 1,25(OH)2D3 to induce FGF23 production and secretion locally. Here, we differentiated MC3T3-E1 cells towards osteocyte-like cells expressing and secreting FGF23. Treatment with 10-6 M 25(OH)D resulted in conversion of 25(OH)D to 150 pmol/L 1,25(OH)2D3 and increased FGF23 expression and secretion but the converted amount of 1,25(OH)2D3 was insufficient to trigger an FGF23 response, so the effect on FGF23 was most likely directly caused by 25(OH)D. Interestingly, combining phosphate with 25(OH)D resulted in a synergistic increase in FGF23 expression and secretion, likely due to activation of additional signaling pathways by phosphate. Blockage of the vitamin D receptor (VDR) only partially abolished the effects of 25(OH)D or 25(OH)D combined with phosphate on Fgf23, while completely inhibiting the upregulation of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), encoding for 24-hydroxylase. RNA sequencing and in silico analyses showed that this could potentially be mediated by the nuclear receptors Retinoic Acid Receptor b (RARB) and Estrogen Receptor 2 (ESR2). Taken together, we demonstrate that osteocytes are able to convert 25(OH)D to 1,25(OH)2D3, but this is insufficient for FGF23 activation, implicating a direct effect of 25(OH)D in the regulation of FGF23, which occurs at least partially independent from its cognate vitamin D receptor Moreover, phosphate and 25(OH)D synergistically increase expression and secretion of FGF23, which warrants investigating consequences in patients receiving a combination of vitamin D analogues and phosphate supplements. These observations help us to further understand the complex relations between, phosphate, vitamin D and FGF23.
Project description:Fibroblast growth factor 23 (FGF23), a hormone, mainly produced by osteocytes, regulates phosphate and vitamin D metabolism. By contrast, 1,25-dihydroxyvitamin D3, the active form of vitamin D, has been shown to enhance FGF23 production. While it is likely that osteocytes are heterogenous in terms of gene expression profiles, specific subpopulations of Fgf23-expressing osteocytes have not been identified. Single-cell RNA sequencing (scRNA-seq) technology can characterize the transcriptome of an individual cell. Recently, scRNA-seq has been used for bone tissue analysis. However, owing to technical difficulties associated with isolation of osteocytes, studies using scRNA-seq analysis to characterize FGF23-producing osteocytes are lacking. In this study, we characterized osteocytes secreting FGF23 from murine femurs in response to calcitriol (1,25-dihydroxyvitamin D3) using scRNA-seq. We first detected Dmp1, Mepe, and Phex expression in murine osteocytes by in situ hybridization and used these as marker genes of osteocytes. After decalcification, enzyme digestion, and removal of CD45+ cells, femoral bone cells were subjected to scRNA-seq. We identified cell clusters containing osteocytes using marker gene expression. While Fgf23 expression was observed in some osteocytes isolated from femurs of calcitriol-injected mice, no Fgf23 expression was detected in untreated mice. In addition, the expression of several genes which are known to be changed after 1,25-dihydroxyvitamin D3 treatment such as Ccnd2, Fn1, Igfbp7, Pdgfa, and Timp1 was also affected by calcitriol treatment in Fgf23-expressing osteocytes, but not in those lacking Fgf23 expression, even after calcitriol administration. Furthermore, box-and-whisker plots indicated that Fgf23 expression was observed in osteocytes with higher expression levels of the Fam20c, Dmp1, and Phex genes, whose inactivating mutations have been shown to cause FGF23-related hypophosphatemic diseases. These results indicate that osteocytes are heterogeneous with respect to their responsiveness to 1,25-dihydroxyvitamin D3, and sensitivity to 1,25-dihydroxyvitamin D3 is one of the characteristics of osteocytes with Fgf23 expression. It is likely that there is a subpopulation of osteocytes expressing several genes, including Fgf23, involved in phosphate metabolism.
Project description:Single cell RNA sequencing (scRNAseq) on wild type (WT) mouse kidneys showed overlapping HBEGF and EGFR expression in the proximal tubule (PT), and KL expression in PT and distal tubule (DT) segments.
Project description:Fibroblast growth factor-23 (FGF23), a circulating protein produced in bone, causes renal inorganic phosphate (Pi) wasting by down-regulation of sodium phosphate co-transporter 2a (Npt2a). The mechanism behind this action is unknown. We have previously generated transgenic mice (TG) expressing human wild-type FGF23 under the control of the α1 (I) collagen promoter. In this study we performed a large scale gene expression study of kidneys from TG mice and wild-type littermates. Several genes that play a role in Pi regulation had decreased expression levels, such as Npt2a, but also Pdzk1 which is a scaffolding protein known to interact with NPT2a. Importantly, the Klotho gene, a suggested crucial co-factor for FGF23 receptor binding and activation, was the most affected decreased gene. However, other genes proposed to regulate Pi levels, such as secreted Frizzled Related Protein 4 (sFRP4), Na+/H+ exchanger regulatory factor 1 (NHERF1) and the FGF-receptors 1-4, revealed no changes. Interestingly, expression levels of inflammatory response genes were increased and histological analysis revealed tubular nephropathy in the TG mice kidneys. In conclusion, FGF23 TG mice have altered kidney gene expression levels of several genes thought to be part of Pi homeostasis and an increase in inflammatory response genes, data supported by histological analysis. These findings may lead to further understanding of how FGF23 mediates its actions on renal Pi regulation. Experiment Overall Design: Five kidneys from FGF23 TG mice and five kidneys from WT littermates was used for Affymetrix Genechip analysis. One Genechip was used/animal. Animals were 8 weeks old when kidneys were collected.
Project description:Fibroblast growth factor-23 (FGF23), a circulating protein produced in bone, causes renal inorganic phosphate (Pi) wasting by down-regulation of sodium phosphate co-transporter 2a (Npt2a). The mechanism behind this action is unknown. We have previously generated transgenic mice (TG) expressing human wild-type FGF23 under the control of the α1 (I) collagen promoter. In this study we performed a large scale gene expression study of kidneys from TG mice and wild-type littermates. Several genes that play a role in Pi regulation had decreased expression levels, such as Npt2a, but also Pdzk1 which is a scaffolding protein known to interact with NPT2a. Importantly, the Klotho gene, a suggested crucial co-factor for FGF23 receptor binding and activation, was the most affected decreased gene. However, other genes proposed to regulate Pi levels, such as secreted Frizzled Related Protein 4 (sFRP4), Na+/H+ exchanger regulatory factor 1 (NHERF1) and the FGF-receptors 1-4, revealed no changes. Interestingly, expression levels of inflammatory response genes were increased and histological analysis revealed tubular nephropathy in the TG mice kidneys. In conclusion, FGF23 TG mice have altered kidney gene expression levels of several genes thought to be part of Pi homeostasis and an increase in inflammatory response genes, data supported by histological analysis. These findings may lead to further understanding of how FGF23 mediates its actions on renal Pi regulation. Keywords: Genetic Modification