Project description:Co-occurrence of aberrant hepatocyte growth factor (HGF)/MET proto-oncogene receptor tyrosine kinase (MET) and Wnt/β-catenin signaling pathways has been observed in advanced and metastatic prostate cancers. This co-occurrence positively correlates with prostate cancer progression and castration-resistant prostate cancer (CRPC) development. However, the biological consequences of these abnormalities in these disease processes remain largely unknown. Here, we investigated the aberrant activation of HGF/MET and Wnt/β-catenin cascades in prostate tumorigenesis by using a newly generated mouse model in which both murine Met transgene and stabilized β-catenin are conditionally co-expressed in prostatic epithelial cells. These compound mice displayed accelerated prostate tumor formation and invasion compared with their littermates that expressed only stabilized β-catenin.RNA-Seq and qRT-PCR analyses revealed increased expression of genes associated with tumor cell proliferation, progression,and metastasis. Moreover, Wnt signaling pathways were robustly enriched in prostate tumor samples from the compound mice.ChIP-qPCR experiments revealed increased β-catenin recruitment within the regulatory regions of the Myc gene in tumor cellsof the compound mice. Interestingly, the occupancy of MET on the Myc promoter also appeared in the compound mouse tumor samples,implicating a novel role of MET in β-catenin–mediated transcription. Results from implanting prostate graft tissues derived from the compound mice and controls into HGF-transgenic mice further uncovered that HGF induces prostatic oncogenic transformation and cell growth. These results indicate a role of HGF/MET in β-catenin–mediated prostate cancer cell growth and progressionand implicate a molecular mechanism whereby nuclear MET promotes aberrant Wnt/β-catenin signaling–mediated prostate tumorigenesis.
Project description:Co-occurrence of aberrant hepatocyte growth factor (HGF)/MET proto-oncogene receptor tyrosine kinase (MET) and Wnt/?-catenin signaling pathways has been observed in advanced and metastatic prostate cancers. This co-occurrence positively correlates with prostate cancer progression and castration-resistant prostate cancer development. However, the biological consequences of these abnormalities in these disease processes remain largely unknown. Here, we investigated the aberrant activation of HGF/MET and Wnt/?-catenin cascades in prostate tumorigenesis by using a newly generated mouse model in which both murine Met transgene and stabilized ?-catenin are conditionally co-expressed in prostatic epithelial cells. These compound mice displayed accelerated prostate tumor formation and invasion compared with their littermates that expressed only stabilized ?-catenin. RNA-Seq and quantitative RT-PCR analyses revealed increased expression of genes associated with tumor cell proliferation, progression, and metastasis. Moreover, Wnt signaling pathways were robustly enriched in prostate tumor samples from the compound mice. ChIP-qPCR experiments revealed increased ?-catenin recruitment within the regulatory regions of the Myc gene in tumor cells of the compound mice. Interestingly, the occupancy of MET on the Myc promoter also appeared in the compound mouse tumor samples, implicating a novel role of MET in ?-catenin-mediated transcription. Results from implanting prostate graft tissues derived from the compound mice and controls into HGF-transgenic mice further uncovered that HGF induces prostatic oncogenic transformation and cell growth. These results indicate a role of HGF/MET in ?-catenin-mediated prostate cancer cell growth and progression and implicate a molecular mechanism whereby nuclear MET promotes aberrant Wnt/?-catenin signaling-mediated prostate tumorigenesis.
Project description:MET, the receptor for hepatocyte growth factor (HGF), is involved in wide variety of biological events and its aberrant activation is implicated in the pathogenesis of cancer. Especially, MET signaling is associated with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), key drugs in therapy of non-small cell lung cancer. MET has 11 potential N-glycosylation sites, however, the site-specific roles of N-glycans have not been elucidated. Here, we report that N-glycans regulate proteolytic processing of MET and HGF induced MET signaling, site specifically. N-glycosylation inhibitors suppressed processing and trafficking of endogenous MET in H1975 and EBC-1 lung cancer cells and exogenous MET in CHO cells. We purified the recombinant extracellular domain of human MET and determined the site-specific N-glycan structures and occupancy using nanoflow liquid chromatography-electrospray ionization mass spectrometry. The results indicated that most sites were fully glycosylated and the dominant population were complex-type which were rich in sialic acids and core fucoses. To examine the effects of N-glycan deletion of MET, we prepared endogenous-MET-knockout Flp-In CHO cells and transfected with series of N-glycan deletion mutants of MET. It was found that several N-glycans are implicated in processing of MET. It was also suggested that the N-glycans of -subunit of MET positively regulate HGF signaling, and the N-glycans of β-subunit negatively regulate HGF signaling. In all-N-glycan deletion mutant, processing and signaling were significantly suppressed. It was observed that the cell proliferation rate was suppressed in all-N-glycan deletion mutant, although the cell surface expression levels of MET were not completely diminished. We examined the HGF biding affinity for the recombinant extracellular domain of MET and found that peptide N-glycosidase F treatment did not affect the ligand binding affinity. It was suggested that N-glycans of MET affect the status and the function of the receptor site-specifically.
Project description:TCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and EGFR, are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved utilizing MET KO mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFRi], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in HNF4α expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed vast majority (~40%) of TCPOBOP-dependent genes mainly related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation. We used microarrays to detail the global programme of gene expression in [METKO + EGFRi] mice liver following TCPOBOP treatment
Project description:Oncogenic mutations in otherwise normal tissue are common in many adult tissues. This suggests multiple events need to converge to drive tumourigenesis and that many processes such as tissue differentiation may be protective against carcinogenesis. Within the liver Wnt/β-catenin signalling maintains zonal differentiation during liver homeostasis. However, the CTNNB1 oncogene—encoding β-catenin—is also frequently mutated in hepatocellular carcinoma, resulting in aberrant Wnt signalling that promotes cell growth. Here we investigated the antagonistic interplay between Wnt-driven growth and differentiation in zonal hepatocyte populations during liver tumorigenesis. In a model that acutely recombined mutant Wnt (Ctnnb1-ex3) and MYC alleles, we found that β-catenin mutants transiently stimulated growth in zone-1 and -2 hepatocytes within the Wnt-low region of the liver lobule – before inducing a differentiated zone-3 fate. To investigate the role of translation in this model of wnt and myc driven growth we performed Ribosome sequencing of whole liver at the early proliferative stage and the later differentiated stage. We found that Mutamt B-Catenin and MYC livers had a unique tanslational efficiency , which promted translation of RNA transcripts associated with growth.
Project description:B16-F10 malignant mouse melanoma cells have been frequently used as highly metastatic cells. Based on heterogenous cell surface expression of Met/HGF (hepatocyte growth factor) receptor in B16-F10 cells, the cells were divided into Met-low and Met-high cells by flow cytometry and these populations were subjected to microarray analysis. Met-low and Met-high cells showed different expression profiles in genes involved characteristics of tumors, including stem cell maintenance, pigmentation, and angiogenesis.
Project description:Non-alcoholic fatty liver disease (NAFLD) is gaining evermore importance due to rapidly rising incidence rates especially in western countries. As the disease progresses, it can develop into hepatocellular carcinoma. Related metabolic changes have been extensively studied in the past. However, the molecular mechanisms responsible for the development of fatty liver disease remain uncovered. Here we show that the basal phosphorylation of the MET receptor can be used as an indicator for hepatocyte dysregulation in fatty liver disease. Using primary hepatocytes isolated from a preclinical model fed with high-fat, high-sugar diet (Western diet; WD) or standard diet (SD), we find a strong downregulation of the PI3K-AKT pathway and upregulation of the MAPK pathway in the WD derived hepatocytes. By developing a mathematical model of HGF-induced signal transduction, calibrated with quantitative time-resolved measurements of both PI3K-AKT and MAPK pathways, we resolve molecular mechanisms responsible for these alterations. Thereby, we identify the basal MET phosphorylation rate as main driver for the altered signal transduction in WD hepatocytes that even leads to an increased proliferation behavior of the usually quiescent hepatocytes in the absence of growth factors. The adaptation of the dynamic pathway model of HGF signal transduction to patient-derived hepatocytes reveals a patient-specific variability of basal MET phosphorylation levels, which correlates with the clinical outcome of patients after liver surgery. These findings suggest that the dysregulated basal MET phosphorylation could be exploited to assess the health status of the liver and thereby inform estimation of the risk of a patient to suffer from liver failure after surgery.Non-alcoholic fatty liver disease (NAFLD) is gaining evermore importance due to rapidly rising incidence rates especially in western countries. As the disease progresses, it can develop into hepatocellular carcinoma. Related metabolic changes have been extensively studied in the past. However, the molecular mechanisms responsible for the development of fatty liver disease remain uncovered. Here we show that the basal phosphorylation of the MET receptor can be used as an indicator for hepatocyte dysregulation in fatty liver disease. Using primary hepatocytes isolated from a preclinical model fed with high-fat, high-sugar diet (Western diet; WD) or standard diet (SD), we find a strong downregulation of the PI3K-AKT pathway and upregulation of the MAPK pathway in the WD derived hepatocytes. By developing a mathematical model of HGF-induced signal transduction, calibrated with quantitative time-resolved measurements of both PI3K-AKT and MAPK pathways, we resolve molecular mechanisms responsible for these alterations. Thereby, we identify the basal MET phosphorylation rate as main driver for the altered signal transduction in WD hepatocytes that even leads to an increased proliferation behavior of the usually quiescent hepatocytes in the absence of growth factors. The adaptation of the dynamic pathway model of HGF signal transduction to patient-derived hepatocytes reveals a patient-specific variability of basal MET phosphorylation levels, which correlates with the clinical outcome of patients after liver surgery. These findings suggest that the dysregulated basal MET phosphorylation could be exploited to assess the health status of the liver and thereby inform estimation of the risk of a patient to suffer from liver failure after surgery.
Project description:Non-alcoholic fatty liver disease (NAFLD) is gaining evermore importance due to rapidly rising incidence rates especially in western countries. As the disease progresses, it can develop into hepatocellular carcinoma. Related metabolic changes have been extensively studied in the past. However, the molecular mechanisms responsible for the development of fatty liver disease remain uncovered. Here we show that the basal phosphorylation of the MET receptor can be used as an indicator for hepatocyte dysregulation in fatty liver disease. Using primary hepatocytes isolated from a preclinical model fed with high-fat, high-sugar diet (Western diet; WD) or standard diet (SD), we find a strong downregulation of the PI3K-AKT pathway and upregulation of the MAPK pathway in the WD derived hepatocytes. By developing a mathematical model of HGF-induced signal transduction, calibrated with quantitative time-resolved measurements of both PI3K-AKT and MAPK pathways, we resolve molecular mechanisms responsible for these alterations. Thereby, we identify the basal MET phosphorylation rate as main driver for the altered signal transduction in WD hepatocytes that even leads to an increased proliferation behavior of the usually quiescent hepatocytes in the absence of growth factors. The adaptation of the dynamic pathway model of HGF signal transduction to patient-derived hepatocytes reveals a patient-specific variability of basal MET phosphorylation levels, which correlates with the clinical outcome of patients after liver surgery. These findings suggest that the dysregulated basal MET phosphorylation could be exploited to assess the health status of the liver and thereby inform estimation of the risk of a patient to suffer from liver failure after surgery.
Project description:Although a promotional role of the androgen receptor (AR) has been implicated in prostate tumorigenesis, the underlying mechanisms by which the AR, as a steroid-hormone receptor, induces prostatic oncogenesis still remain unknown. Conditional expression of the human AR transgene (hARtg) through Osr1 (old skipped related1) driven-Cre develops high-grade prostatic intraepithelial neoplasia (HGPIN) and adenocarcinomas in mice. Single-cell transcriptomic and genetic tracing analyses implicate the prostatic progenitor properties of prostatic Osr1-expressing cells through prostate development. Conditional expression of hARtg in Osr1-expressing basal epithelial cells elevates IGF1 signaling and initiates prostate oncogenesis and PIN formation. Aberrant IGF1 signaling further cumulates Wnt/b-catenin activation in atypical PIN cells to promote tumor development. Specific inhibition of Wnt signaling pathways significantly represses the growth of hARtg-positive prostate tumor cells in ex-vivo and xenograft models. These data elucidate a new and dynamic regulatory loop initiated by aberrant AR signaling altering IGF1 and Wnt signaling pathways in prostate oncogenesis and tumor development.