Project description:The aim of this study was to evaluate the role of N-acyl homoserine lactones (AHLs) in the regulation of swimming motility of Hafnia alvei H4 and its biofilm formation on 96-well plate, glass and stainless-steel surfaces. The luxI gene, which codes for an enzyme involved in AHL synthesis, was deleted to generate a luxI mutant (ΔluxI). The mutant produced no AHL, and the relative expression of the luxR gene was significantly (P < 0.05) decreased. In addition, qRT-PCR analysis showed that the relative expression of the luxR gene in ΔluxI was stimulated by the presence of exogenous AHLs (C4-HSL, C6-HSL, and 3-o-C8-HSL) added at concentrations ranging from of 50-250 μg/ml. Among the three AHLs, C6-HSL had the strongest effect. The ability of ΔluxI to form biofilm on 96-well plate, glass and stainless-steel surfaces was significantly reduced (P < 0.05) compared with the wild type (WT), but was increased when provided with 150 μg/ml C4-HSL, whereas C6-HSL and 3-o-C8-HSL had no effect. Scanning electron microscopy analysis of the biofilm revealed less bacteria adhering to the surface of stainless-steel and fewer filaments were found binding to the cells compared with the WT. Furthermore, ΔluxI also exhibited significant (P < 0.05) decrease in the expression of biofilm- and swimming motility-related genes, flgA, motA and cheA, consistent with the results observed for biofilm formation and swimming motility. Taken together, the results suggested that in H. alvei H4, C4-HSL may act as an important molecular signal through regulating the ability of the cells to form biofilm, as well as through regulating the swimming motility of the cell, and this could provide a new way to control these phenotypes of H. alvei in food processing.
Project description:A clinical isolate of Hafnia alvei (strain HUMV-5920) was obtained from a urine sample from an adult patient. We report here its complete genome assembly using PacBio single-molecule real-time (SMRT) sequencing, which resulted in a chromosome with 4.5 Mb and a circular contig of 87 kb. About 4,146 protein-coding genes are predicted from this assembly.
Project description:In the food industry, foodborne spoilage bacteria often live in mixed species and attach to each other, leading to changes in spoilage characteristics. Quorum sensing (QS) has been reported to be a regulating mechanism for food spoiling by certain kinds of bacteria. Here, the contents of biofilm, extracellular polysaccharides, and biogenic amines in the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525 were significantly reduced when the QS element of H. alvei H4 was deleted, confirming that QS of H. alvei H4 is involved in the dual-species interactions. Then, transcriptomics was used to explore the regulatory mechanism at the mRNA molecular level. The deletion of the QS element decreased the transcript levels of genes related to chemotaxis, flagellar assembly, and the two-component system pathway of H. alvei H4 in the coculture system. Furthermore, a total of 732 DEGs of P. fluorescens ATCC13525 were regulated in the dual species, which were primarily concerned with biofilm formation, ATP-binding cassette transporters, and amino acid metabolism. Taken together, the absence of the QS element of H. alvei H4 weakened the mutual cooperation of the two bacteria in the coculture system, making it a good target for managing infection with H. alvei and P. fluorescens.