Project description:NIH-3T3 cells were infected with wildtype MCMV at a multiplicity of infection (MOI) of 10. Ribosome profiling was performed at the indicated times of infection as described in Rutkowski et al., Nature Communications 2015.
Project description:The neural behavior of glioblastoma, including the formation of tumor microtubes and synaptic circuitry, is increasingly understood to be pivotal for disease manifestation (Osswald et al. 2015; Venkatesh et al. 2015; Weil et al. 2017; Venkataramani et al. 2019; Venkatesh et al. 2019; Alcantara Llaguno et al. 2019; Venkataramani et al. 2022). Nonetheless, the few approved treatments for glioblastoma target its oncological nature, while its neural vulnerabilities remain incompletely mapped and clinically unexploited. Here, we systematically survey the neural molecular dependencies and cellular heterogeneity across 27 glioblastoma patients and diverse model systems. In patient tumor samples taken directly after surgery, we identify a spectrum of neural stem cell morphologies indicative of poor prognosis, and discover a set of repurposable neuroactive drugs with unexpected and consistent anti-glioma efficacy. Glioblastoma cells exhibit functional dependencies on highly expressed drug targets including neurological ion channels and receptors, while interpretable molecular machine learning reveals downstream convergence on secondary drug targets (COSTAR) involving AP-1-driven tumor suppression. COSTAR enables in silico drug screening on >1 million compounds that are validated with high accuracy. Multi-omic profiling of drug-treated glioblastoma cells confirms rapid Ca2+-driven AP-1 pathway induction to represent a tumor-intrinsic vulnerability at the intersection of oncogenesis and neural activity-dependent signaling. Finally, the consistent anti-glioma activity across patients and model systems is epitomized by the antidepressant Vortioxetine, which synergizes in vivo with approved glioblastoma chemotherapies. In all, our global analysis reveals that the neural vulnerabilities of glioblastoma converge on an AP-1 mediated gene regulatory network with direct translatable potential.
Project description:We previously reported a polyvinyl alcohol-based mouse hematopoietic stem cell (HSC) culture protocol that efficiently expanded transplantable HSCs for at least a month ex vivo (Wilkinson et al., Nature 2019). Here, we investigated the molecular consequences of oxygen concentration on 28-day ex vivo HSC cultures using bulk RNA-seq
Project description:We used MULTI-seq (McGinnis, Patterson, et al., Nature Methods, 2019) to perform multiplexed single-cell RNA-sequencing analysis of cryopreserved primary melanoma tumor samples isolated from mice inoculated with TYW2 WT or KO tumors. Presented data represent CD45+ immune cells isolated from both tumor backgrounds at two timepoints (D18 and D21).
Project description:We previously reported a polyvinyl alcohol-based mouse hematopoietic stem cell (HSC) culture protocol that efficiently expanded transplantable HSCs for at least a month ex vivo (Wilkinson et al., Nature 2019). Here, we investigated the molecular consequences of oxygen concentration on 28-day ex vivo HSC cultures using single cell RNA-seq
Project description:Key regulators of septum formation between the left and right ventricle in mammals, including the transcription factors TXB5 and PITX2, feature loss-of-function phenotypes that affect development of the two-chambered zebrafish heart, suggesting uncharacterized primordial functions of these septation regulators prior to the evolution of any physical boundaries between heart chambers. Data is as published in Mosimann & Panakova et al (Nature Communications, 2015)
Project description:Fastq files for the 16S rDNA amplicon library of 714 fecal samples of 20 time series (as described in Vandeputte et al. 2021, Nature Communications)
Project description:While DNA methylation is an important gene regulatory mechanism in mammals (Razin and Riggs 1980; Moore, Le, and Fan 2013), its function in arthropods remains poorly understood. Studies in eusocial insects have argued for its role in caste development by regulating gene expression and splicing (Elango et al. 2009; Lyko et al. 2010; Bonasio et al. 2012; Flores et al. 2012; Foret et al. 2012; Li-Byarlay et al. 2013; Marshall, Lonsdale, and Mallon 2019; Shi et al. 2013)(Alvarado et al. 2015; Kucharski et al. 2008). However, such findings are not always consistent across studies, and have therefore remained controversial (Arsenault, Hunt, and Rehan 2018; Cardoso-Junior et al. 2021; Harris et al. 2019; Herb et al. 2012; Libbrecht et al. 2016; Oldroyd and Yagound 2021b; Patalano et al. 2015). Here we use CRISPR/Cas9 to mutate the maintenance DNA methyltransferase DNMT1 in the clonal raider ant, Ooceraea biroi. Mutants have greatly reduced DNA methylation but no obvious developmental phenotypes, demonstrating that, unlike mammals (Brown and Robertson 2007; En Li, Bestor, and Jaenisch 1992; Jackson-Grusby et al. 2001; Panning and Jaenisch 1996), ants can undergo normal development without DNMT1 or DNA methylation. Additionally, we find no evidence of DNA methylation regulating caste development. However, mutants are sterile, while in wildtypes, DNMT1 is localized to the ovaries and maternally provisioned into nascent oocytes. This supports the idea that DNMT1 plays a crucial but unknown role in the insect germline (Amukamara et al. 2020; Arsala et al. 2021; Bewick et al. 2019; Schulz et al. 2018; Ventós-Alfonso et al. 2020; Washington et al. 2020).