Project description:Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Total RNA derived from 3DPI Anaplasma phagocytophilum-infected HL-60 cells was labeled with A647 and total RNA derived from 3DPI Mock-infected HL-60 cells was labeled with A546. For each, 5 µg of total RNA was labeled using Genisphere Array900, Alexa Fluor dyes and SuperscriptII. Slide scanned with ScanArray Express and images processed with GenePix Pro version 4.0. Normalized log ratios VALUES determined using R-project statistical environment (http://www.r-project.org) and Bioconductor (http://www.bioconductor.org) through the GenePix AutoProcessor (GPAP, http://darwin.biochem.okstate.edu/gpap) website (P. Ayoubi, unpublished results). Keywords: time-course
Project description:Anaplasma phagocytophilum infects a wide variety of host species and causes the diseases granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. The objective of this research was to characterize differential gene expression in wild boar naturally infected with A. phagocytophilum by microarray hybridization using the GeneChip® Porcine Genome Array
Project description:Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Total RNA derived from 3DPI Anaplasma phagocytophilum-infected HL-60 cells was labeled with A647 and total RNA derived from 3DPI Mock-infected HL-60 cells was labeled with A546. For each, 5 µg of total RNA was labeled using Genisphere Array900, Alexa Fluor dyes and SuperscriptII. Slide scanned with ScanArray Express and images processed with GenePix Pro version 4.0. Normalized log ratios VALUES determined using R-project statistical environment (http://www.r-project.org) and Bioconductor (http://www.bioconductor.org) through the GenePix AutoProcessor (GPAP, http://darwin.biochem.okstate.edu/gpap) website (P. Ayoubi, unpublished results).
Project description:Previously, we observed that a tick salivary protein named sialostatin L2 (SL2) mitigates caspase 1-mediated inflammation upon Anaplasma phagocytophilum infection. Here we are performing next-generation sequencing to determine the global effect of SL2 upon A. phagocytophilum infection of macrophages. BMDMs were treated by 4 different conditions (including non-treated, treated by SL2, treated by Anaplasma, and by Anaplasma and SL2, each treatment was performed in triplicate) followed by the extraction of total RNA and deep sequencing by Illumina
Project description:Previously, we observed that a tick salivary protein named sialostatin L2 (SL2) mitigates caspase 1-mediated inflammation upon Anaplasma phagocytophilum infection. Here we are performing next-generation sequencing to determine the global effect of SL2 upon A. phagocytophilum infection of macrophages.
Project description:Anaplasma phagocytophilum infects a wide variety of host species and causes the diseases granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. The objective of this research was to characterize differential gene expression in wild boar naturally infected with A. phagocytophilum by microarray hybridization using the GeneChip® Porcine Genome Array Differential gene expression in wild boar naturally infected with A. phagocytophilum was chacarterized by microarray hybridization using the GeneChip® Porcine Genome Array and real-time RT-PCR.
Project description:Anaplasma phagocytophilum is the causative agent of tick-borne fever (TBF) in ruminants and human, equine and canine granulocytic anaplasmosis. A. phagocytophilum modifies host gene expression and immune response. The objective of this work was to analyze differential gene expression in A. phagocytophilum-infected sheep using microarray hybridization and real-time RT-PCR in experimentally and naturally infected animals. Keywords: disease state analysis
Project description:Background: Anaplasma phagocytophilum is an obligate intracellular prokaryotic pathogen that both infects and replicates within human neutrophils. The bacterium represses multiple antimicrobial functions while simultaneously increasing proinflammatory functions by reprogramming the neutrophil genome. Previous reports show that many observed phenotypic changes are in part explained by altered gene transcription. We recently identified that large chromosomal regions of the neutrophil genome are differentially expressed during A. phagocytophilum infection. Because of this, we sought to determine whether gene expression programs altered by infection were the result of changes in the host neutrophil DNA methylome. Results: Within 24 h of infection, marked increases in DNA methylation were observed genome-wide as compared with mock-infected controls and pharmacologic inhibition of DNA methyltransferases resulted in decreased bacterial growth. New regions of DNA methylation were enriched at intron and exon junctions; however, intragenic methylation did not correlate with altered gene expression. In contrast, intergenic DNA methylation was associated with A. phagocytophilum-induced gene expression changes. Within the major histocompatibility complex locus on chromosome 6, a region with marked changes in infection-induced differential gene expression, new regions of methylation were localized to boundaries of active and inactive chromatin. Conclusions: These data strongly suggest that A. phagocytophilum infection, in addition to altering histone structure, alters DNA methylation and the epigenome of its host cell to promote survival and replication, providing evidence that such bacterial infection can radically alter the epigenome of its host cell. Examination of methylated DNA sites in 3 human donors' neutrophils with and without 24h infection by Anaplasma phagocytophilum.