Project description:Using the HiSeqTM 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Peiâai 64S) were analyzed at the fertility sensitive stage under cold stress.These datas would be most beneficial for further studies investigating the molecular mechanisms of rice responses to cold stress.
Project description:We used RNA-Seq to systematically investigate the global transcriptomes of rice which was inoculated with viruliferous SBPH, or inoculated with insect-derived RSV or plant-derived RSV by mechanical inoculation, and generated a useful resource for the immune reaction of rice in face of different kinds of RSV. The changes in the expression of candidate transcripts may provide valuable information for future studies on molecular mechanisms of rice stripe disease.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.
Project description:A biological phenomenon in which hybrids exhibit superior phenotypes from its parental inbred lines known as heterosis, has been widely exploited in plant breeding and extensively used in crop improvement. Hybrid rice has immense potential to increase yield over other rice varieties and hence is crucial in meeting increasing demand of rice globally. Moreover, the molecular basis of heterosis is still not fully understood and hence it becomes imperative to unravel its genetic and molecular basis. In this context, RNA sequencing technology (RNA-Seq) was employed to sequence transcriptomes of two rice hybrids, Ajay and Rajalaxmi, their parental lines, CRMS31A (sterile line, based on WA-CMS) and CRMS32A (sterile line based on Kalinga-CMS) respectively along with the common restorer line of both hybrids, IR-42266-29-3R at two critical rice developmental stages viz., panicle initiation (PI) and grain filling (GF). Identification of differentially expressed genes (DEGs) at PI and GF stages will further pave the way for understanding heterosis. In addition, such kind of study would help in better understanding of heterosis mechanism and genes up-regulated and down-regulated during the critical stages of rice development for higher yield.
Project description:Imbibitional oxidative stress of different magnitude, imposed by treatment with different titer of H2O2 (both elevated, 20 mM and low, 500 µM) to an indica rice cultivar (Oryza sativa L., Cultivar Ratna) caused formation of differential redox cues at the metabolic interface, as evident from significant alteration of ROS/antioxidant ratio, efficacy of ascorbate-glutathione cycle, radical scavenging property, modulation of total thiol content and expression of oxidative membrane protein and lipid damages as biomarkers of oxidative stress. All the redox parameters examined, substantiate the experimental outcome that treatment with elevated concentration of H2O2 caused serious loss of redox homeostasis and germination impairment, whereas low titre H2O2 treatment not only restored redox homeostasis but also improve germination and post-germinative growth. The inductive pulse of H2O2 (500 µM) exhibited significantly better performance of ascorbate-glutathione pathway, which was otherwise down-regulated significantly in 20 mM H2O2 treatment-raised seedlings. A comparison between imbibitional chilling stress-raised experimental rice seedlings with 20 mM H2O2 treated rice seedling revealed similar kind of generation of redox cues and oxidative stress response. Further, imbibitional H2O2 treatments in rice also revealed a dose-dependent regulation of expression of genes of Halliwell-Asada pathway enzymes, which is in consonance with the redox metabolic response of germinating rice seeds. In conclusion, a dose-dependent regulation of H2O2 mediated redox cues and redox regulatory properties during germination in rice are suggested, the knowledge of which may be exploited as a promising seed priming technology.
Project description:The impact of global warming on weather patterns raises concerns for agriculture management. Using NGS technologies, we identified the miRNA profile that is expressed in rice cultivar grown at two different temperatures. We observed 118 and 100 miRNAs uniquely expressed at 35°C and 25°C respectively. Potential targets of these miRNAs have been identified. An interesting example, would be mir1863b which targets Os07g46670.3; a homologue of the ERD15 gene in Arabidopsis which is involved in dehydration stress response.