Project description:membrane distillation biofilm Raw sequence reads
| PRJNA481855 | ENA
Project description:Membrane performance in direct contact membrane distillation with a focus on the fouling characteristics at different temperature regions
Project description:We introduce Affinity Distillation (AD), a method for extracting thermodynamic affinities de-novo from in-vivo immunoprecipitation experiments using deep learning. We show that neural networks modeling base-resolution in-vivo binding profiles of yeast and mammalian TFs can accurately predict energetic impacts of varying underlying DNA sequence on TF binding. Systematic comparisons between Affinity Distillation predictions and other predictive algorithms consistently show that Affinity Distillation more accurately predicts affinities across a wide range of TF structural classes and DNA sequences. Affinity Distillation relies on in-silico marginalization against many sequence backgrounds, resulting in a higher dynamic range and more accurate predictions than motif discovery algorithms. Moreover, we show that Affinity Distillation can learn differential paralog-specific affinities, thereby making it possible to more accurately reconstruct regulatory networks in cells.
2022-06-29 | GSE207001 | GEO
Project description:membrane biofouling under two different operating modes during the purification process of surface water using membrane distillation system
Project description:There is still a lot of contradiction on whether metal ions are solely responsible for the observed the toxicity of ZnO and CuO nanoparticles to aquatic species. While most tests have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at suborganismal levels may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO, CuO nanoparticles and zinc, copper salts was tested on the gene expression levels in Daphnia magna. D. magna was exposed during 96 hours to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for a differential gene expression analysis using microarray. When comparing the nanoparticle exposed daphnids (ZnO or CuO) to the metal salt exposed daphnids (zinc or copper salt), the microarray results showed no significantly differentially expressed genes. These results indicate that the toxicity of the tested ZnO and CuO nanoparticles to D. magna caused is solely caused by toxic metal ions.
Project description:There is still a lot of contradiction on whether metal ions are solely responsible for the observed the toxicity of ZnO and CuO nanoparticles to aquatic species. While most tests have studied nanoparticle effects at organismal levels (e.g. mortality, reproduction), effects at suborganismal levels may clarify the role of metal ions, nanoparticles and nanoparticle aggregates. In this study, the effect of ZnO, CuO nanoparticles and zinc, copper salts was tested on the gene expression levels in Daphnia magna. D. magna was exposed during 96 hours to 10% immobilization concentrations of all chemicals, after which daphnids were sampled for a differential gene expression analysis using microarray. When comparing the nanoparticle exposed daphnids (ZnO or CuO) to the metal salt exposed daphnids (zinc or copper salt), the microarray results showed no significantly differentially expressed genes. These results indicate that the toxicity of the tested ZnO and CuO nanoparticles to D. magna caused is solely caused by toxic metal ions.
Project description:Lipid metabolism and antioxidant system contributed to salt salinity tolerance induced by Na+ accumulation in halophytic grass seashore paspalum