Project description:In cereal crop plants, sexual development and reproduction are key steps in producing seeds. However, genes responsible for reproductive function and development are largely unknown in soybean. Here, the soybean flower development was divided into three stages, namely the early stage(E), before pollination (BP) and post-pollination (PP). The flowers were hand-dissected into six tissues under the stereomicroscope, including anther (An), filament (Fi), stigma (St), style and ovary (SO), petal (Pe) and sepal (Se). All samples were processed for total RNA extraction and RNA sequencing (RNA-seq) data were generated in this study.
Project description:Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed. This SuperSeries is composed of the following subset Series: GSE13988: Rice expression atlas (1): Anther development GSE14298: Rice expression atlas (2): Pollination - Fertilization GSE14299: Rice expression atlas (3): Early embryogenesis GSE14300: Rice expression atlas (4): Vegetative tissues GSE14301: Rice expression atlas (5): Anther development (Agilent data) Refer to individual Series
Project description:Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed. This SuperSeries is composed of the SubSeries listed below.
Project description:We report the genome-wide transcriptome of soybean seeds across several stages of seed development and the entire life cycle using Illumina high-throughput sequencing technology. Specifically, we profiled whole seeds containing globular-stage, heart-stage, cotyledon-stage, and early maturation-stage embryos. We also profiled dry soybean seeds, and vegetative and reproductive tissues including leaves, roots, stems, seedlings, and floral buds. Illumina sequencing of transcripts from whole seeds at five stages of seed development (globular, heart, cotyledon, early-maturation, dry), and vegetative (leaves, roots, stems, seedlings) and reproductive (floral buds) tissues.
Project description:Drought-responsive genes in soybean leaves were successfully identified using Affymetrix Soybean Gene 1.0 ST arrays on leaves samples of reproductive-stage soybean plants. R1 soybean plants planted in pots were imposed drought by withholding water for 5 days until the soil moisture content dropped to 5%, and 3rd trifoliates (now at the R2 stage) were collected for expression profiling.
Project description:Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed. Keywords: developmental stage comparison, tissue comparison, platform comparison Anther development of rice from hypodermal archesporial cells formation to tri-cellular mature pollens were divided into eight stages. Three or four biological replicates at each stage were analyzed with Affymetrix Rice Genome Array, and total number of samples in this series is 26.
Project description:Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed. Keywords: developmental stage comparison, tissue comparison, platform comparison Anther development of rice from hypodermal archesporial cells formation to tri-cellular mature pollens were divided into eight stages. Two biological replicates at each stage were analyzed with Agilent Rice 60mer oligo DNA microarray 4x44K RAP-DB, and total number of samples in this series is 16. In this series, we analyzed the RNA samples used in GSE13988 for platform comparison.
Project description:We report the genome-wide transcriptome of soybean seeds across several stages of seed development and the entire life cycle using Illumina high-throughput sequencing technology. Specifically, we profiled whole seeds containing globular-stage, heart-stage, cotyledon-stage, early maturation-stage, mid-maturation-stage, and late-maturation-stage embryos. We also profiled dry soybean seeds, and vegetative and reproductive tissues including leaves, roots, stems, seedlings, and floral buds.
Project description:Flooding and drought are adverse factors for soybean growth. To obtain better insight into the response mechanism of soybean under flooding and drought stresses, organ specificanalysis was performed using gel-free proteomic technique.