Project description:Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. The array SNP data was used for revaling of key candidate loci and genes associated with important agronomic traits in peanut
Project description:Peanut (Arachis hypogaea) has a large (~2.7 Gbp) allotetraploid genome with closely related component genomes making its genome very challenging to assemble. Here we report genome sequences of its diploid ancestors (A. duranensis and A. ipaënsis). We show they are similar to the peanutâs A- and B-genomes and use them use them to identify candidate disease resistance genes, create improved tetraploid transcript assemblies, and show genetic exchange between peanutâs component genomes. Based on remarkably high DNA identity and biogeography, we conclude that A. ipaënsis may be a descendant of the very same population that contributed the B-genome to cultivated peanut. Whole Genome Bisulphite Sequencing of the peanut species Arachis duranensis and Arachis ipaensis.
Project description:Comparison of gene expression profiles of widespread peanut cultivars for exploring the expression data in pod and leaf with regard to signatures of artificial selection We investigated the overall expression by hybridizing the microarray (GPL13178) with RNA samples from pods and leaves of five selected representative peanut varieties (Fuhuasheng, Shitouqi, Yueyou116, Shanyou523, and Yueyou7), which were widely cultivated in different periods of the past fifty years in southern China. We used the RNA sample from Yueyou7 pod as a reference for all the pod hybridizations, and used the Yueyou7 leaf sample as a reference for all the leaf hybridizations. Field grown plants under normal irrigation were used for sample collection. Replicates with dye-swap were performed for each genotype.
Project description:Peanut (Arachis hypogaea) has a large (~2.7 Gbp) allotetraploid genome with closely related component genomes making its genome very challenging to assemble. Here we report genome sequences of its diploid ancestors (A. duranensis and A. ipaënsis). We show they are similar to the peanut’s A- and B-genomes and use them use them to identify candidate disease resistance genes, create improved tetraploid transcript assemblies, and show genetic exchange between peanut’s component genomes. Based on remarkably high DNA identity and biogeography, we conclude that A. ipaënsis may be a descendant of the very same population that contributed the B-genome to cultivated peanut.
Project description:The root proteomics of two cultivars differing in seed Cd accumulation, Fenghua 1 (F, low Cd cultivar) and Silihong (S, high Cd cultivar), were investigated under 0 (CK) and 2 μM Cd (Cd) conditions. The eight root proteins from two biological replicates of both peanut cultivars under Cd-free and Cd treated were obtained from iTRAQ experiments.
Project description:Comparison of gene expression profiles of widespread peanut cultivars for exploring the expression data in pod and leaf with regard to signatures of artificial selection