Project description:This paper reports on the comparative characteristics and properties of the metabolites derived from methyl red (MR) decolorization by Lysinibacillus fusiformis strain W1B6 under static and shaking conditions. A batch culture system was used to investigate the effect of aeration on azoreductase activity in the biodegradation process, transformation of colour removal and the metabolite products. Biodegradation analysis was monitored using Fourier transform infrared spectroscopy and high-performance liquid chromatography while metabolites were determined using gas chromatography-mass spectroscopy. Phytotoxicity and anti-microbial tests were also conducted to detect the toxicity of metabolites. The results showed that this strain grew more rapidly under shaking conditions while azoreductase activity increased more rapidly under static conditions. Despite that, no significant difference in the decolorization was observed under both static and shaking conditions with up to 96% and 93.6% decolorization achieved, respectively, within 4 h of incubation. MR was degraded into two fragmented compounds, i.e. 2-aminobenzoic acid and N,N-dimethyl-1.4-benzenediamine. The concentration of 2-amino benzoic acid was higher under static conditions resulting the biotransformation of 2-amino benzoic acid into methyl anthranilate more rapidly under static conditions. Other metabolites were also detected as intermediate biotransformation products and by-products. Less or no toxic effect was found in the metabolite degradation products under both culture conditions.
Project description:Here we present the morphological and physiological properties of isolated Lysinibacillus fusiformis strain GM, its draft genome sequence as well as annotation and analysis of its genome. Initial analysis of MALDI-TOF mass spectrometry, 16S rRNA gene analysis and in silico DNA-DNA hybridization revealed that the strain belongs to the species Lysinibacillus fusiformis. The 4,678,122 bp draft genome consist of 17 scaffolds encoding 4588 proteins and 137 RNAs. Annotation of the genome sequence revealed cellulase and protease encoding genes, genes of adhesion proteins and putative genes responsible for the biosynthesis of antimicrobial metabolites. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number NTMQ00000000.1 (https://www.ncbi.nlm.nih.gov/nuccore/NZ_NTMQ00000000.1).