Project description:We investigated the toxicity of soil samples derived from a former municipal landfill site in the South of the Netherlands, where a bioremediation project is running aiming at reusing the site for recreation. Both an organic soil extract and the original soil sample was investigated using the ISO standardised Folsomia soil ecotoxicological testing and gene expression analysis. The 28 day survival/reproduction test revealed that the ecologically more relevant original soil sample was more toxic than the organic soil extract. Microarray analysis showed that the more toxic soil samples induced gene regulatory changes in twice as less genes compared to the soil extract. Consequently gene regulatory changes were highly dependent on sample type, and were to a lesser extent caused by exposure level. An important biological process shared among the two sample types was the detoxification pathway for xenobiotics (biotransformation I, II and III) suggesting a link between compound type and observed adverse effects. Finally, we were able to retrieve a selected group of genes that show highly significant dose-dependent gene expression and thus were tightly linked with adverse effects on reproduction. Expression of four cytochrome P450 genes showed highest correlation values with reproduction, and maybe promising genetic markers for soil quality. However, a more elaborate set of environmental soil samples is needed to validate the correlation between gene expression induction and adverse phenotypic effects.
Project description:The present invention relates to methods for determining soil quality, and especially soil pollution, using the invertebrate soil organism Folsomia candida also designated as springtail. Specifically, the present invention relates to a method for determining soil quality comprising: contacting Folsomia Candida with a soil sample to be analysed during a time period of 1 to 5 days; isolating said soil contacted Folsomia Candida; extracting RNA from said isolated soil contacted Folsomia Candida; determing a gene expression profile based on said extracted RNA using microarray technology; comparing said gene expression profile with a reference gene expression profile; and determing soil quality based expression level differences between said gene expression profile and said control expression profile.
Project description:Fungal necromass in soil represents the stable carbon pools. While fungi are known to decompose fungal necromass, how fungi decomopose melanin, remains poorly understood. Recently, Trichoderma species was found to be one of the most commonly associated fungi in soil, we have used a relevant fungal species, Trichoderma reesei, to characterized Genes involved in the decomposition of melanized and non-melanized necromass from Hyaloscypha bicolor.
Project description:It has long been recognized that species occupy a specific ecological niche within their ecosystem. The ecological niche is defined as the number of conditions and resources that limit species distribution. Within their ecological niche, species do not exist in a single physiological state but in a number of states we call the Natural Operating Range. In this paper we link ecological niche theory to physiological ecology by measuring gene expression levels of collembolans exposed to various natural conditions. The soil-dwelling collembolan Folsomia candida was exposed to 26 natural soils with different soil characteristics (soil type, land use, practice, etc). The animals were exposed for two days and gene expression levels were measured. The main factor found to regulate gene expression was the soil type (sand or clay), in which 18.5% of the measured genes were differentially expressed. Gene Ontology analysis showed animals exposed to sandy soils experience general stress, affecting cell homeostasis and replication. Multivariate analysis linking soil chemical data to gene expression data revealed that soil fertility influences gene expression. Land-use and practice had less influence on gene expression; only forest soils showed a different expression pattern. A variation in gene expression variation analysis showed overall low variance in gene expression. The large difference in response to soil type was caused by the soil physicochemical properties where F. candida experiences clay soils and sandy soils as very different from each other. This collembolan prefers fertile soils with high organic matter content, as soil fertility was found to correlate with gene expression and animals exposed to sandy soils (which, in general, have lower organic matter content) experience more general stress. Finally, we conclude that there is no such thing as a fixed physiological state for animals in their ecological niche and the boundary between the ecological niche and a stressed state depends on the genes/pathways investigated.
Project description:Transcriptional profiling of RNA-seq data from two Burkholderia species grown under conditions mimicking the cystic fibrosis lung and the soil environment
Project description:We report the evolutionary behaviour of Polycomb group proteins, their recruitment factors and their underlying sequences by performing ChIP-seq analysis in 4-5 different Drosophila species. We demonstrate an extremely high conservation of Polycomb repressive domains across Drosophila species We validate few cases of PRE divergence that shows that cis-driven PRE evolution is a rare event. We further show that PHO recruitment to Polycomb domains is evolutionarily robust to motif changes and that PRC1 stabilizes binding of its key recruiter ChIP-seq analysis of histone marks and chromatin associated factors across 4-5 Drosophila species
Project description:Metaproteome analysis of a forest soil and a potting soil. Different protein extraction methods were compared to investigate protein extraction efficiency and compatibility with sample downstream processing.
Project description:We detected the expression of miRNA in an esophageal NEC sample and the corresponding normal esophagus tissue. Then, we identified the differentially expressed miRNAs in this rare disease.
2018-04-28 | GSE113776 | GEO
Project description:Rare fungal species case infection: Starmera stellimalicola
Project description:We detected the expression of miRNA in a fibrosarcoma with ESCC sample and the corresponding normal esophagus tissue. Then, we identified the differentially expressed miRNAs in this rare disease.