Project description:Bi-allelic, loss-of-function PAX1 variants underlie a syndromic form of severe combined immunodeficiency (SCID) by disrupting thymus development. To assess if bi-allelic PAX1 variants affect differentiation of thymic epithelial cells in vitro, we reprogrammed fibroblasts from a healthy control and two patients with bi-allelic pathogenic PAX1 variants to induced pluripotent stem cells (iPSCs), and subsequently differentiated these to thymic epithelial progenitor cells (TEP).
Project description:Coarctation of the aorta (CoA) accounts for 5-8% of all congenital heart defects. CoA can be detected in up to 20% of patients with Ullrich-Turner syndrome (UTS), in which a part or all of one of the X chromosomes is absent. The etiology of non-syndromic CoA is poorly understood. In the present work, we test the hypothesis that rare copy number variation (CNV) especially on the gonosomes, contribute to the etiology of non-syndromic CoA.
Project description:Coarctation of the aorta (CoA) accounts for 5-8% of all congenital heart defects. CoA can be detected in up to 20% of patients with Ullrich-Turner syndrome (UTS), in which a part or all of one of the X chromosomes is absent. The etiology of non-syndromic CoA is poorly understood. In the present work, we test the hypothesis that rare copy number variation (CNV) especially on the gonosomes, contribute to the etiology of non-syndromic CoA.
Project description:Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well-established that both common and rare sequence variants contribute to the formation of CL/P, however, the contribution of copy number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed, however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our case cohort compared to controls, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR/Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.
Project description:Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well-established that both common and rare sequence variants contribute to the formation of CL/P, however, the contribution of copy number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed, however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our case cohort compared to controls, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR/Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.
Project description:Congenital heart disease (CHD) is the most frequent birth defect and affects nearly 1% of newborns. The etiology of CHD is largely unknown and only a small percentage can be assigned to environmental risk factors such as maternal diseases or exposure to mutagenic agents during pregnancy. Chromosomal imbalances have been identified in many forms of syndromic CHD, but next to nothing is known about the impact of DNA copy number changes in non-syndromic CHD. Here we present a sub-megabase resolution array CGH screen of a cohort with CHD as the sole abnormality at the time of diagnosis. Keywords: array CGH
Project description:Severe combined immunodeficiency (SCID) occurs in various species, including humans, at a frequency as high as one per 50,000 live births. Generally, SCID can be classified according to the cause of the immunodeficiency, and it includes impaired cytokine-mediated signalling, defective V(D)J recombination, impaired pre-T-cell receptor signalling, and metabolic enzyme deficiencies. Although mice with disrupted SCID-causing genes have provided important insights into the human disease, not all the SCID mice have phenotypes that resemble those in human SCID patients. In humans, most SCID patients are reported to have impaired cytokine-mediated signalling in immune cells. IL2RG is a key component of the immune system, which is associated with the development of X-linked SCID in humans. Despite some phenotypic characterisations and functional studies being performed in SCID animals, little is known about the molecular basis of the different phenotypes of SCID in mouse and pig. In the present experiment, we generated monoallelic IL2RG (mIL2RG+/Δ69-368) KO pigs and investigated patterns of gene expression during their immune development in order to further explore our understanding of immune responses in X-linked SCID.
Project description:Severe combined immunodeficiency (SCID) occurs in various species, including humans, at a frequency as high as one per 50,000 live births. Generally, SCID can be classified according to the cause of the immunodeficiency, and it includes impaired cytokine-mediated signalling, defective V(D)J recombination, impaired pre-T-cell receptor signalling, and metabolic enzyme deficiencies. Although mice with disrupted SCID-causing genes have provided important insights into the human disease, not all the SCID mice have phenotypes that resemble those in human SCID patients. In humans, most SCID patients are reported to have impaired cytokine-mediated signalling in immune cells. IL2RG is a key component of the immune system, which is associated with the development of X-linked SCID in humans. Despite some phenotypic characterisations and functional studies being performed in SCID animals, little is known about the molecular basis of the different phenotypes of SCID in mouse and pig. In the present experiment, we generated monoallelic IL2RG (mIL2RG+/Δ69-368) KO pigs and investigated patterns of gene expression during their immune development in order to further explore our understanding of immune responses in X-linked SCID.
Project description:Severe combined immunodeficiency (SCID) occurs in various species, including humans, at a frequency as high as one per 50,000 live births. Generally, SCID can be classified according to the cause of the immunodeficiency, and it includes impaired cytokine-mediated signalling, defective V(D)J recombination, impaired pre-T-cell receptor signalling, and metabolic enzyme deficiencies. Although mice with disrupted SCID-causing genes have provided important insights into the human disease, not all the SCID mice have phenotypes that resemble those in human SCID patients. In humans, most SCID patients are reported to have impaired cytokine-mediated signalling in immune cells. IL2RG is a key component of the immune system, which is associated with the development of X-linked SCID in humans. Despite some phenotypic characterisations and functional studies being performed in SCID animals, little is known about the molecular basis of the different phenotypes of SCID in mouse and pig. In the present experiment, we generated monoallelic IL2RG (mIL2RG+/Δ69-368) KO pigs and investigated patterns of gene expression during their immune development in order to further explore our understanding of immune responses in X-linked SCID.