Project description:Tissue regeneration is a multi-step process mediated by diverse cellular hierarchies and states that are also implicated in tissue dysfunction and pathogenesis. Here, we leveraged single-cell RNA sequencing in combination with in vivo lineage tracing and organoid models to finely map the trajectories of alveolar lineage cells during injury repair and lung regeneration. We identified a distinct AT2-lineage population, Damage-Associated Transient Progenitors (DATPs), that arises during alveolar regeneration. We found that interstitial macrophage-derived IL-1β primes a subset of AT2 cells expressing Il1r1 for conversion into DATPs via a HIF1α-mediated glycolysis pathway, which is required for mature AT1 cell differentiation. Importantly, chronic inflammation mediated by IL-1β prevents AT1 differentiation, leading to aberrant accumulation of DATPs and impaired alveolar regeneration. Together, this step-wise mapping to cell fate transitions shows how an inflammatory niche impairs alveolar regeneration by controlling stem cell fate and behavior.
Project description:Tissue regeneration is a multi-step process mediated by diverse cellular hierarchies and states that are also implicated in tissue dysfunction and pathogenesis. Here, we leveraged single-cell RNA sequencing in combination with in vivo lineage tracing and organoid models to finely map the trajectories of alveolar lineage cells during injury repair and lung regeneration. We identified a distinct AT2-lineage population, Damage-Associated Transient Progenitors (DATPs), that arises during alveolar regeneration. We found that interstitial macrophage-derived IL-1β primes a subset of AT2 cells expressing Il1r1 for conversion into DATPs via a HIF1α-mediated glycolysis pathway, which is required for mature AT1 cell differentiation. Importantly, chronic inflammation mediated by IL-1β prevents AT1 differentiation, leading to aberrant accumulation of DATPs and impaired alveolar regeneration. Together, this step-wise mapping to cell fate transitions shows how an inflammatory niche impairs alveolar regeneration by controlling stem cell fate and behavior.
Project description:Tissue regeneration is a multi-step process mediated by diverse cellular hierarchies and states that are also implicated in tissue dysfunction and pathogenesis. Here, we leveraged single-cell RNA sequencing in combination with in vivo lineage tracing and organoid models to finely map the trajectories of alveolar lineage cells during injury repair and lung regeneration. We identified a distinct AT2-lineage population, Damage-Associated Transient Progenitors (DATPs), that arises during alveolar regeneration. We found that interstitial macrophage-derived IL-1β primes a subset of AT2 cells expressing Il1r1 for conversion into DATPs via a HIF1α-mediated glycolysis pathway, which is required for mature AT1 cell differentiation. Importantly, chronic inflammation mediated by IL-1β prevents AT1 differentiation, leading to aberrant accumulation of DATPs and impaired alveolar regeneration. Together, this step-wise mapping to cell fate transitions shows how an inflammatory niche impairs alveolar regeneration by controlling stem cell fate and behavior.
Project description:Tissue regeneration is a multi-step process mediated by diverse cellular hierarchies and states that are also implicated in tissue dysfunction and pathogenesis. Here we leveraged single-cell RNA sequencing in combination with in vivo lineage tracing and organoid models to finely map the trajectories of alveolar-lineage cells during injury repair and lung regeneration. We identified a distinct AT2-lineage population, damage-associated transient progenitors (DATPs), that arises during alveolar regeneration. We found that interstitial macrophage-derived IL-1β primes a subset of AT2 cells expressing Il1r1 for conversion into DATPs via a HIF1α-mediated glycolysis pathway, which is required for mature AT1 cell differentiation. Importantly, chronic inflammation mediated by IL-1β prevents AT1 differentiation, leading to aberrant accumulation of DATPs and impaired alveolar regeneration. Together, this stepwise mapping to cell fate transitions shows how an inflammatory niche controls alveolar regeneration by controlling stem cell fate and behavior.
Project description:AT2 cells are the resident progenitor cells in alveoli, capable of self-proliferation and differentiation into alveolar type I cells during homeostatic maintenance and tissue regeneration. The AT2 cell population is heterogenous. We identified a small subpopulation of AT2 cells that express high levels of CD44 (CD44hi) and display progenitor functions during alveoli homeostasis. To further analyze the heterogeneity of the AT2 cell population and characterize CD44hi AT2 cells, we performed single cell RNA-seq on the total AT2 cell population and CD44hi AT2 cells.
Project description:The pulmonary alveolar epithelium mainly composed of two types of epithelial cells: alveolar type I (AT1) and type II (AT2) cells. AT2 cells are the alveolar stem cells, and can differentiate into AT1 cells post-pneumonectomy (PNX). Here, we found that, compared with control mice (Sftpc-CreER; Cdc42flox/+; Rosa26-mTmG) at post-PNX day 21, Cdc42 AT2 null mice (Sftpc-CreER; Cdc42flox/-; Rosa26-mTmG) at post-PNX day 21 undergone fibrotic change. By using 10X genomics “Chromium Single Cell” technology, we performed single-cell RNA-seq analyses of AT2 cells of sham treated control mice (C0), AT2 cells of control mice at post PNX day 21 (C21) , AT2 cells of sham treated Cdc42 AT2 null mice (N0), and AT2 cells of Cdc42 AT2 null mice at post PNX day 21 (N21). The study identified a specific gene signature in AT2 cells of Cdc42 AT2 null mice at post PNX day 21 which is related to the fibrosis phenotype of Cdc42 AT2 null mice.