Project description:Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Similar mechanisms and gene transcripts are assumed to be involved in the host defense response because both pathogens are biotrophic fungi. The main objective of our study was to identify co-regulated mRNAs that show a change in expression pattern after inoculation with Pst or Bgt, and to identify mRNAs specific to the fungal stress response. In the present study, cDNA libraries were constructed from leaves inoculated with Pst or Bgt at 0, 1, 2 and 3 days post-inoculation (dpi) with three biological replicates, and then sequenced using the Illumina HiSeq™ 2000 platform. Note: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence “Source Name” was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:PPARγ is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA Steroid receptor RNA Activator, SRA, associates with PPARγ and coactivates PPARγ-dependent reporter gene expression. Overexpression of SRA in ST2 adipocyte precursor cells promotes their differentiation into adipocytes. Conversely, knockdown of endogenous SRA inhibits 3T3-L1 preadipocyte differentiation. Microarray analysis reveals hundreds of SRA-responsive genes in adipocytes, including genes in cell cycle, insulin and TNFα signaling pathways. Some functions of SRA may involve mechanisms other than coactivation of PPARγ. SRA increases insulin-stimulated glucose uptake in adipocytes. SRA promotes S-phase entry during mitotic clonal expansion, decreases expression of cyclin-dependent kinase inhibiters p21Cip1 and p27Kip1, and increases phosphorylation of Cdk1/Cdc2. SRA also inhibits the TNFα-induced phosphorylation of c-Jun NH2-terminal kinase. In conclusion, SRA enhances adipogenesis and adipocyte function through multiple pathways.
Project description:We performed Chromatin Isolation by RNA Purification (ChIRP) of SRA and ChIP of p68 following by high-throughput sequencing in NTERA2 cell line. We find that SRA localizes with p68 genome-wide at genes whose function is involved in embryonic development.
2014-06-18 | GSE58641 | GEO
Project description:SRA of Amycolatopsis sp. DR6-1