Project description:Heterogeneity in brown adipocyte populations was observed. Until recently, thermogenic adipocytes have been considered a homogeneous population. However, studies have pointed to the existence of multiple subtypes, which are distinct in developmental origin, substrate usage and transcriptome. Our current incomplete understanding of cell types in brown and beige adipose tissue and the lack of specific markers constitute a critical barrier to studying their biological functions. Our goal is to use the advances in single-cell genomics to determine subtypes that constitute adipose tissue under various thermogenic stimuli at the single cell resolution.
Project description:Gene expression profile from brown adipose tissues of Prdm16 knockout and wile type mice. Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development.
Project description:The aim of this study was to identify genes expressed selectively in brown adipose tissue as compared to white adipose tissue from the same animals. This analysis provides a gene set that is brown and white adipose selective. Keywords: tissue comparison from mice
Project description:Gene expression profile from brown adipose tissues of Prdm16 knockout and wile type mice. Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. Brown adipose tissues were collected from Prdm16 knockout and wiletype mice with 4 biological replicates per condition. Experiment was done in two separate batch for 6-week-old and 11-month-old. Extracted RNA was hybridized to Agilent two-color arrays.
Project description:Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (Ucp1). Previously, we reported that the TATA-binding protein Associated Factor 7L (Taf7l) is an important regulator of white adipose tissue (WAT) differentiation. Here, we show that Taf7l also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, Taf7l containing TFIID complexes associate with PPAR to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that presence of the tissue-specific Taf7l subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification. mRNA-seq expression profiling wild type and Taf7l knockout interscapular brown adipose tissue (BAT)