Project description:In order to investigate the physiological and biochemical characteristics and molecular mechanisms during the leaf colour change of Acer rubrum L, this study used Acer rubrum L. 'Autumn Blaze' cuttings as material and analysed the transcriptome and miRNAs of Acer rubrum L leaves under different light and temperature treatments. The transcriptome and miRNAs of Acer rubrum L leaves were analysed under different light and temperature treatments, and miRNA-mRNA association analysis was performed for the differentially expressed mRNAs and miRNAs.
Project description:Sun-loving plants have the ability to detect and avoid shading through sensing of both blue and red light wavelengths. Higher plant cryptochromes (CRYs) control how plants modulate growth in response to changes in blue light. For growth under a canopy, where blue light is diminished, CRY1 and CRY2 perceive this change and respond by directly contacting two bHLH transcription factors, PIF4 and PIF5. These factors are also known to be controlled by phytochromes, the red/far-red photoreceptors; however, transcriptome analyses indicate that the gene regulatory programs induced by the different light wavelengths are distinct. Our results indicate that CRYs signal by modulating PIF activity genome-wide, and that these factors integrate binding of different plant photoreceptors to facilitate growth changes under different light conditions.
2015-12-31 | GSE68193 | GEO
Project description:transcriptome analysis of brassica napus under different light quality
| PRJNA658388 | ENA
Project description:Transcriptome analysis of acidothermophilic red algae under different light conditions
| PRJNA507473 | ENA
Project description:Transcriptome of Cylindrobasidium torrendii under different light and dark treatments
| PRJNA1188722 | ENA
Project description:Transcriptome of Trametes versicolor under different light and dark treatments
Project description:Sun-loving plants have the ability to detect and avoid shading through sensing of both blue and red light wavelengths. Higher plant cryptochromes (CRYs) control how plants modulate growth in response to changes in blue light. For growth under a canopy, where blue light is diminished, CRY1 and CRY2 perceive this change and respond by directly contacting two bHLH transcription factors, PIF4 and PIF5. These factors are also known to be controlled by phytochromes, the red/far-red photoreceptors; however, transcriptome analyses indicate that the gene regulatory programs induced by the different light wavelengths are distinct. Our results indicate that CRYs signal by modulating PIF activity genome-wide, and that these factors integrate binding of different plant photoreceptors to facilitate growth changes under different light conditions. We performed whole-genome chromatin immunoprecipitation with sequencing (ChIP-Seq) analysis on 5 day old Flash-CRY2, PIF4-Flash and PIF5-Flash treated in low blue-light for 16h.