Project description:Circulating plasma miRNAs profiling in platelets-free plasma samples from Behçet's disease patients compared with healthy subjects, aimed to both pathogenesis elucidation and candidate non-invasive biomarkers identification.
Project description:We aim to investigate circulating genome-wide microRNA (miRome) profiles in Moyamoya disease (MMD)-discordant monozygotic (MZ) twins with the RNF213 founder mutation (rs112735431).A disease discordant monozygotic twin-based study design may unmask potential confounders from previously published circulating microRNA signature in MMD. Circulating genome-wide microRNA (miRNome) profiling was performed in MMD-discordant monozygotic twins, non-twin-MMD patients, and non-MMD healthy volunteers by microarray followed by qPCRvalidation, using blood samples. Differential plasma-microRNAs were further quantified in endothelial cells differentiated from iPS cell lines (iPSECs) derived from another independent non-twin cohort. Lastly, their target gene expression in the iPSECs was analyzed. Microarray detected 309 plasma-microRNAs in MMD-discordant monozygotic twins that were also detected in the non-twin cohort. Principal component analysis of the plasma-microRNA expression level demonstrated distinct 2 groups separated by MMD and healthy control in the twin- and non-twin cohorts. Of these, differential up-regulations of hsa-miR-6722-3p/-328-3p were validated in the plasma of MMD (Imposed threshold: absolute log2 expression fold change (logFC) > 0.26 for the twin cohort; absolute logFC > 0.26, p < 0.05, and q < 0.15 for the non-twin cohort). In MMD derived iPSECs, hsa-miR-6722-3p/-328-3p showed a trend of up-regulation with a 3.0- or higher expression fold change. Bioinformatics analysis revealed that 41 target genes of miR- 6722-3p/-328-3p were significantly down-regulated in MMD derived iPSECs and were involved in STAT3, IGF-1-, and PTEN-signaling, suggesting a potential microRNA- gene expression interaction between circulating plasma and endothelial cells. In conclusion, our MMD-discordant monozygotic twin-based study confirmed a novel circulating microRNA signature in MMD as a potential diagnostic biomarker minimally confounded by genetic heterogeneity. The novel circulating microRNA signature can contribute for the future functional microRNA analysis to find new diagnostic and therapeutic target of MMD.
Project description:Background and Purpose - Circulating microRNAs (miRNAs) are emerging biomarkers for stroke due to their high stability in the bloodstream and association with pathophysiologic conditions. However, the circulating whole-genome miRNAs (miRNome) has not been characterized comprehensively in the acute phase of stroke. Methods - We profiled the circulating miRNome in mouse models of acute ischemic and hemorrhagic stroke by next-generation sequencing (NGS). Stroke models were compared to sham-operated and naïve mice to identify deregulated circulating miRNAs. Top-ranked miRNAs were validated and further characterized by qRT-PCR. Results - We discovered 24 circulating miRNAs with an altered abundance in the circulation 3 hours following ischemia, whereas the circulating miRNome was not altered after intracerebral hemorrhage compared to sham-operated mice. Among the upregulated miRNA in ischemia, the top-listed miR-1264/1298/448 cluster was strongly dependent on reperfusion in different ischemia models. A time course experiment revealed that the miR-1264/1298/448 cluster peaked in the circulation around 3 hours after reperfusion and gradually decreased thereafter. Conclusions - Alteration of the miRNome in the circulation is associated with cerebral ischemia/reperfusion, but not hemorrhage, suggesting a potential to serve as biomarkers for reperfusion in the acute phase. The pathophysiological role of reperfusion-inducible miR-1264/1298/448 cluster, which is located on chromosome X within the introns of the serotonin receptor HTR2C, requires further investigation.
Project description:We conducted a screening analysis to assess the presence of a characteristic extracellular circulating microRNAs (ci-miRNAs) profile in Behçet's syndrome (BS). Total RNA was extracted from platelets-free plasma (PFP) samples obtained from 16 BS patients and 18 healthy controls. Ci-miRNAs profiling was conducted by using dedicated Agilent microarray hybridization and data extraction technology. Statistical analysis of data extracted from microarray scanning revealed the deregulation of 36 ci-miRNAs, which turned out be differentially expressed between BS patients and healthy controls. Detailed experimental methods and data analysis were described here. The raw and normalized microarray data were deposited into Gene Expression Omnibus (GEO) under accession number GSE145191.