Project description:The plant Tanacetum coccineum (painted daisy) is closely related to Tanacetum cinerariifolium (pyrethrum daisy). However, T. cinerariifolium produces large amounts of pyrethrins, a class of natural insecticides, whereas T. coccineum produces much smaller amounts of these compounds. Thus, comparative genomic analysis is expected to contribute a great deal to investigating the differences in biological defense systems, including pyrethrin biosynthesis. Here, we elucidated the 9.4 Gb draft genome of T. coccineum, consisting of 2,836,647 scaffolds and 103,680 genes. Comparative analyses of the draft genome of T. coccineum and that of T. cinerariifolium, generated in our previous study, revealed distinct features of T. coccineum genes. While the T. coccineum genome contains more numerous ribosome-inactivating protein (RIP)-encoding genes, the number of higher-toxicity type-II RIP-encoding genes is larger in T. cinerariifolium. Furthermore, the number of histidine kinases encoded by the T. coccineum genome is smaller than that of T. cinerariifolium, suggesting a biological correlation with pyrethrin biosynthesis. Moreover, the flanking regions of pyrethrin biosynthesis-related genes are also distinct between these two plants. These results provide clues to the elucidation of species-specific biodefense systems, including the regulatory mechanisms underlying pyrethrin production.
Project description:Tanacetum coccineum, a perennial plant of the Tanacetum genus, cultivated as a natural pesticide or ornamental plant widely distributed in many countries. In this research, the complete chloroplast genome sequence of T. coccineum was determined to comprise a 150,143 bp double-stranded circular DNA, including a pair of 24,416 bp inverted repeat regions (IRs), small single copy (SSC) region of 18,389 bp and large single copy (LCS) region of 82,922 bp. An overall GC content was 37.49%, and the corresponding values in IRs, SSC, and LSC regions are 43.16%, 30.88%, and 35.61%, respectively. A total of 129 genes include 84 protein-coding genes, 37 tRNA, and eight rRNA. Four rRNA genes and seven tRNA genes were duplicated in IRs. A phylogenetic tree reconstructed by 38 Composite family chloroplast genomes sequence reveals that T. coccineum is mostly related to Ismelia carinata.
Project description:Natural pyrethrins have been widely used as natural pesticides due to their low mammalian toxicity and environmental friendliness. Previous studies have mainly focused on Tanacetumcinerariifolium, which contains high levels of pyrethrins and volatile terpenes that play significant roles in plant defense and pollination. However, there is little information on T. coccineum due to its lower pyrethrin content and low commercial value. In this study, we measured the transcriptome and metabolites of the leaves (L), flower buds (S1), and fully blossomed flowers (S4) of T. coccineum. The results show that the expression of pyrethrins and precursor terpene backbone genes was low in the leaves, and then rapidly increased in the S1 stage before decreasing again in the S4 stage. The results also show that pyrethrins primarily accumulated at the S4 stage. However, the content of volatile terpenes was consistently low. This perhaps suggests that, despite T. coccineum and T. cinerariifolium having similar gene expression patterns and accumulation of pyrethrins, T. coccineum attracts pollinators via its large and colorful flowers rather than via inefficient and metabolically expensive volatile terpenes, as in T. cinerariifolium. This is the first instance of de novo transcriptome sequencing reported for T. coccineum. The present results could provide insights into pyrethrin biosynthetic pathways and will be helpful for further understanding how plants balance the cost-benefit relationship between plant defense and pollination.
Project description:Identification of target transcripts for the putative chloroplast RNA binding protein CFM2 in Zea mays. CFM2 was immunoprecipitated from a chloroplast extract. Chloroplast extracts were prepared from WT tissue. RNA from the pellet and from the supernatant for each pulldown was labelled with different fluoro-dyes and hybridized onto an array covering the complete maize chloroplast genome. Messages enriched in the immunoprecipitate from WT tissue are likely targets for CFM2.
Project description:Identification of target transcripts for the putative chloroplast RNA binding protein CRP1 in Zea mays. CRP1 was immunoprecipitated from a chloroplast extract. Chloroplast extracts were prepared from WT and CRP1-deficient tissue. RNA from the pellet and from the supernatant for each pulldown was labelled with different fluoro-dyes and hybridized onto an array covering the complete maize chloroplast genome. Messages enriched in the immunoprecipitate from WT tissue, but not enriched in mutant tissue are likely targets for CRP1.