Project description:Many studies have demonstrated the importance of circRNA in regulating gene expression through functioning as microRNA sponges. However, the roles of circRNA-protein interaction are not fully understood. Importantly, how circRNA-protein interaction contributes the progression of pancreatic ductal adenocarcinoma is largely unexplored. Therefore, RNA Pull down assay for investigating RNA-protein interaction was performed in PANC-1 cells.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:We performed knockdown of circARID1A, overexpression of circARID1A and overexpression of miR-204-3p in ReNcell, independently. The 22,480 gene expression changes were examined by microarray analysis.