Project description:Pathogenic biofilms have been associated with persistent infections due to high resistance to antimicrobial agents while commensal biofilms often fortify host immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacteria-related diseases. We investigated the effect of plant flavonoids on biofilm formation of both enterohemorrhagic Escherichia coli O157:H7 and three commensal E. coli K-12 strains. Phloretin abundant in apples markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx2), autoinducer-2 importer genes (lsrACDBF), a curli gene (csgA), and a dozens of prophage genes in E. coli O157:H7 cells. Electron microscopy confirmed that phroretin reduced the curli production in E. coli O157:H7. In addition, phloretin suppressed TNF-α-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that phloretin may act as an inhibitor of E. coli O157:H7 biofilm formation as well as anti-inflammatory agent on inflammatory bowel diseases while leaving beneficial commensal E. coli biofilm intact.
Project description:The goal was to determine the chemotherapy-induced, mammalian cell death-dependent transcriptional response in a human commensal strain of E. coli. Murine intestinal epithelial cells were used to induce chemotherapy-driven cell death, and a human commensal strain of E. coli was used as the 'recipient' bacteria.
Project description:Escherichia coli O157 presents a number of specific problems in terms of food safety and public health. It has been found that E. coli O157 is more resistant to a number of the stresses encountered during food production such as heat, pH and osmotic shock. This greater resistance is thought to contribute to the low infectious dose of E. coli O157 (<100 organisms). Moreover, E. coli O157 is associated with debilitating conditions such as haemorrhagic colitis and haemoytic uraemic syndrome, particularly in children and the elderly. We have been studying the stress responses of E. coli O157:H7 (Sakai) and comparing with a commensal strain of E. coli K-12, MG1655. We found that E. coli O157 (Sakai) is more resistant to heat stress than MG1655. A microarray study of these strains subjected to sub-lethal heat-stress at 45M-BM-0C was carried out. In E. coli O157 (Sakai), 380 genes responded significantly to the treatment compared to 410 genes in MG1655. Overnight cultures of E. coli O157 (Sakai) and E. coli K-12 MG1655 were grown in Neidhardt's EZ Rich Defined Medium and diluted 1:100 in 50 ml fresh medium in 125 ml Ehrlenmeyer flasks. The cultures were shaken at 37M-BM-0C until the optical density (OD600) reached 0.4. Each culture was divided into 2 equal parts in identical flasks. One flask flask was transferred to a shaking water bath and incubated at 45M-BM-0C for 10 min; the other flask was incubated at 37M-BM-0C for 10 min. After incubation, the cultures were transferred to 50 mL centrifuge tubes and treated with RNAprotectM-bM-^DM-" to stabilise the mRNA. The experiment was performed 3 times on different days. Six custom-made microarray slides were used in this study; each slide was hybridised with labelled cDNA made from untreated and heated E. coli O157 (Sakai) or MG1655.
Project description:Pathogenic biofilms have been associated with persistent infections due to high resistance to antimicrobial agents while commensal biofilms often fortify host immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacteria-related diseases. We investigated the effect of plant flavonoids on biofilm formation of both enterohemorrhagic Escherichia coli O157:H7 and three commensal E. coli K-12 strains. Phloretin abundant in apples markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx2), autoinducer-2 importer genes (lsrACDBF), a curli gene (csgA), and a dozens of prophage genes in E. coli O157:H7 cells. Electron microscopy confirmed that phroretin reduced the curli production in E. coli O157:H7. In addition, phloretin suppressed TNF-α-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that phloretin may act as an inhibitor of E. coli O157:H7 biofilm formation as well as anti-inflammatory agent on inflammatory bowel diseases while leaving beneficial commensal E. coli biofilm intact. For the microarray experiments, E. coli O157:H7 EDL933 was inoculated in 25 ml of LB in 250 ml flasks with overnight cultures that were diluted at 1:100. Cells were shaken at 100 rpm and 37°C for 7 hrs. Cells were immediately chilled with dry ice and 95% ethanol (to prevent RNA degradation) for 30 sec before centrifugation in 50 ml centrifuge tubes at 13,000 g for 2 min; cell pellets were frozen immediately with dry ice and stored -80°C. RNA was isolated using Qiagen RNeasy mini Kit (Valencia, CA, USA). To eliminate DNA contamination, Qiagen RNase-free DNase I was used to digest DNA. RNA quality was assessed by Agilent 2100 bioanalyser using the RNA 6000 Nano Chip (Agilent Technologies, Amstelveen, The Netherlands), and quantity was determined by ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., DE, USA).
Project description:Identification and expression analysis of microRNAs in infected larvae of the insect model Galleria mellonella with uropathogenic (UPEC) and commensal E. coli strains that are known to cause symptomatic and asymptomatic bacteriuria (ABU) in humans, respectively.
Project description:Honey has been widely used against bacterial infection for centuries. Previous studies suggested that honeys in high concentrations inhibited bacterial growth due to the presence of anti-microbial compounds, such as methylglyoxal, hydrogen peroxide, and peptides. In this study, we found that three honeys (acacia, clover, and polyfloral) in a low concentration as below as 0.5% (v/v) significantly suppress virulence and biofilm formation in enterohemorrhagic E. coli O157:H7 affecting the growth of planktonic cells while these honeys do not harm commensal E. coli K-12 biofilm formation. Transcriptome analyses show that honeys (0.5%) markedly repress quorum sensing genes (e.g., AI-2 import and indole biosynthesis), virulence genes (e.g., LEE genes), and curli genes (csgBAC). We found that glucose and fructose in honeys are key compounds to reduce the biofilm formation of E. coli O157:H7 via suppressing curli production, but not that of E. coli K-12. Additionally, we observed the temperature-dependent response of honeys and glucose on commensal E. coli K-12 biofilm formation; honey and glucose increase E. coli K-12 biofilm formation at 37°C, while they decrease E. coli K-12 biofilm formation at 26°C. These results suggest that honey can be a practical tool for reducing virulence and colonization of the pathogenic E. coli O157:H7, while honeys do not harm commensal E. coli community in the human.
Project description:Escherichia coli, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g., between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for “domesticated” E. coli strains with regard to the behaviour of this species in its natural environments is often questioned and frequently doubts are raised on the status of E. coli as a defined species. We therefore investigated the variability of important eco-physiological functions such as carbon substrate uptake and breakdown capabilities as well as stress defence mechanisms in the genomes of commensal and pathogenic E. coli strains. Furthermore, eco-physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic E. coli. Environmental isolates adapted to glucose-limited growth in a similar way as E. coli MG1655, namely by increasing their catabolic flexibility and by inducing high affinity substrate uptake systems. Our results indicate that the major eco-physiological properties are highly conserved in the natural population of E. coli. This questions the proposed dominant role of horizontal gene transfer for niche adaptation. Keywords: comparative genomic hybridisation
Project description:Escherichia coli, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g., between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for “domesticated” E. coli strains with regard to the behaviour of this species in its natural environments is often questioned and frequently doubts are raised on the status of E. coli as a defined species. We therefore investigated the variability of important eco-physiological functions such as carbon substrate uptake and breakdown capabilities as well as stress defence mechanisms in the genomes of commensal and pathogenic E. coli strains. Furthermore, eco-physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic E. coli. Environmental isolates adapted to glucose-limited growth in a similar way as E. coli MG1655, namely by increasing their catabolic flexibility and by inducing high affinity substrate uptake systems. Our results indicate that the major eco-physiological properties are highly conserved in the natural population of E. coli. This questions the proposed dominant role of horizontal gene transfer for niche adaptation. Keywords: CGH, E. coli, gDNA, environmental strains, eco-physiology
Project description:Escherichia coli O157 presents a number of specific problems in terms of food safety and public health. It has been found that E. coli O157 is more resistant to a number of the stresses encountered during food production such as heat, pH and osmotic shock. This greater resistance is thought to contribute to the low infectious dose of E. coli O157 (<100 organisms). Moreover, E. coli O157 is associated with debilitating conditions such as haemorrhagic colitis and haemoytic uraemic syndrome, particularly in children and the elderly. We have been studying the stress responses of E. coli O157:H7 (Sakai) and comparing with a commensal strain of E. coli K-12, MG1655. We found that E. coli O157 (Sakai) is more sensitive to oxidative stress than MG1655. A microarray study of these strains treated with sub-lethal concentrations (0.5mg/ml) of menadione revealed big differences in their responses. In E. coli O157 (Sakai), 540 genes responded significantly to the treatment compared to 121 genes in MG1655. One surprising finding from the microarray data was the observation that many iron-transport genes were up-regulated in E. coli O157 (Sakai) whereas relatively few were induced in MG1655 despite the fact that the bacteria were grown in a medium containing ample iron. We speculated that the induction of iron transport genes in an iron-rich medium might have contributed to the enhanced killing of E. coli O157 (Sakai) through triggering of a Fenton reaction. We speculated that the difference in sensitivity to oxidative stress might be due to differences in the intracellular iron content of E. coli O157 and MG1655. We found that E. coli O157 contains ~50% more iron than MG1655 and believe that during oxidative stress, this iron is released by damaged proteins. The greater levels of free iron in E. coli O157 will trigger a greater Fenton reaction that can damage the ferric uptake regulator (Fur), resulting in unregulated iron transport. In MG1655, the lower iron content results in a smaller Fenton reaction, enabling the cellular protection systems to limit damage and protect Fur.