Project description:Ectomycorrhizal fungi are dependent on host trees for carbon supply. In return ectomycorrhizal fungi supply trees with water and nutrients. It is known that when ectomycorrhizal fungi have exploited a nutrient rich patch in soil, the carbon allocation to mycelia in that patch is reduced, with the consequence of mycelia dying, but less is known of the dynamics of this senescence. We cultivated the ectomycorrhizal fungus Paxillus involutus in an axenic system. We collected growth and transcriptome data at different stages of carbon starvation during fungal growth. Carbon starvation induced a decrease in fungal biomass, which coincided with the release of NH4+ and the expression of genes connected with autophagy as well as protease and chitinase activity. Monoaromatic compounds, chitin and protease activity was detected in the liquid growth media during carbon starvation. The exudation of NH4+ and increase of monoaromatic compound during C starvation suggests senescence and autolysis of P. involutus. Together with the upregulation of genes involved in autophagy, chitinase and endopeptidase activity this points towards a controlled senescence including recycling of compounds originating from the fungi. Reduced C allocation to ectomycorrhizal mycelia in recently depleted nutrient patches in forest soils must be of ubiquitous nature. Understanding the mechanisms during exploitation of nutrients by ectomycorrhizal fungi is of great importance for understanding carbon and nutrient dynamics in forest soils. This is to our knowledge the first study describing the carbon starvation response in an ectomycorrhizal fungus.
Project description:Ectomycorrhizal fungi are dependent on host trees for carbon supply. In return ectomycorrhizal fungi supply trees with water and nutrients. It is known that when ectomycorrhizal fungi have exploited a nutrient rich patch in soil, the carbon allocation to mycelia in that patch is reduced, with the consequence of mycelia dying, but less is known of the dynamics of this senescence. We cultivated the ectomycorrhizal fungus Paxillus involutus in an axenic system. We collected growth and transcriptome data at different stages of carbon starvation during fungal growth. Carbon starvation induced a decrease in fungal biomass, which coincided with the release of NH4+ and the expression of genes connected with autophagy as well as protease and chitinase activity. Monoaromatic compounds, chitin and protease activity was detected in the liquid growth media during carbon starvation. The exudation of NH4+ and increase of monoaromatic compound during C starvation suggests senescence and autolysis of P. involutus. Together with the upregulation of genes involved in autophagy, chitinase and endopeptidase activity this points towards a controlled senescence including recycling of compounds originating from the fungi. Reduced C allocation to ectomycorrhizal mycelia in recently depleted nutrient patches in forest soils must be of ubiquitous nature. Understanding the mechanisms during exploitation of nutrients by ectomycorrhizal fungi is of great importance for understanding carbon and nutrient dynamics in forest soils. This is to our knowledge the first study describing the carbon starvation response in an ectomycorrhizal fungus. A one-chip study (data from 12 subarrays collected from a 12-plex Nimblegen microarray (ID 527890) using total RNA recovered from three separate glass-bead cultures of Paxillus involutus (ATCC200175) grown on Minimum Melin Norkrans medium (MMN) amended with ammonium (C/N ratio 3) and harvested at different times of carbon starvation.)
Project description:Decomposition of soil organic matter in forest soils is thought to be controlled by the activity of saprotrophic fungi, while biotrophic fungi including ectomycorrhizal fungi act as vectors for input of plant carbon. The limited decomposing ability of ectomycorrhizal fungi is supported by recent findings showing that they have lost many of the genes that encode hydrolytic plant cell-wall degrading enzymes in their saprophytic ancestors. Nevertheless, here we demonstrate that ectomycorrhizal fungi representing at least four origins of symbiosis have retained significant capacity to degrade humus-rich litter amended with glucose. Spectroscopy showed that this decomposition involves an oxidative mechanism and that the extent of oxidation varies with the phylogeny and ecology of the species. RNA-Seq analyses revealed that the genome-wide set of expressed transcripts during litter decomposition has diverged over evolutionary time. Each species expressed a unique set of enzymes that are involved in oxidative lignocellulose degradation by saprotrophic fungi. A comparison of closely related species within the Boletales showed that ectomycorrhizal fungi oxidized litter material as efficiently as brown-rot saprotrophs. The ectomycorrhizal species within this clade exhibited more similar decomposing mechanisms than expected from the species phylogeny in concordance with adaptive evolution occurring as a result of similar selection pressures. Our data shows that ectomycorrhizal fungi are potential organic matter decomposers, yet not saprotrophs. We suggest that the primary function of this decomposing activity is to mobilize nutrients embedded in organic matter complexes and that the activity is driven by host carbon supply. Comparative transcriptomics of ectomycorrhizal (ECM) versus brown-rot (BR) fungi while degrading soil-organic matter
Project description:Decomposition of soil organic matter in forest soils is thought to be controlled by the activity of saprotrophic fungi, while biotrophic fungi including ectomycorrhizal fungi act as vectors for input of plant carbon. The limited decomposing ability of ectomycorrhizal fungi is supported by recent findings showing that they have lost many of the genes that encode hydrolytic plant cell-wall degrading enzymes in their saprophytic ancestors. Nevertheless, here we demonstrate that ectomycorrhizal fungi representing at least four origins of symbiosis have retained significant capacity to degrade humus-rich litter amended with glucose. Spectroscopy showed that this decomposition involves an oxidative mechanism and that the extent of oxidation varies with the phylogeny and ecology of the species. RNA-Seq analyses revealed that the genome-wide set of expressed transcripts during litter decomposition has diverged over evolutionary time. Each species expressed a unique set of enzymes that are involved in oxidative lignocellulose degradation by saprotrophic fungi. A comparison of closely related species within the Boletales showed that ectomycorrhizal fungi oxidized litter material as efficiently as brown-rot saprotrophs. The ectomycorrhizal species within this clade exhibited more similar decomposing mechanisms than expected from the species phylogeny in concordance with adaptive evolution occurring as a result of similar selection pressures. Our data shows that ectomycorrhizal fungi are potential organic matter decomposers, yet not saprotrophs. We suggest that the primary function of this decomposing activity is to mobilize nutrients embedded in organic matter complexes and that the activity is driven by host carbon supply.