Project description:Low phosphate concentrations are frequently a constraint for maize growth and development, and therefore, enormous quantities of phosphate fertilizer are expended in maize cultivation, which increases the cost of planting. Low phosphate stress not only increases root biomass but can also cause significant changes in root morphology. Low phosphate availability has been found to favor lateral root growth over primary root growth by dramatically reducing primary root length and increasing lateral root elongation and lateral root density in Arabdopsis. While in our assay when inbred line Q319 subjected to phosphate starvation, The numbers of lateral roots and lateral root primordia were decreased after 6 days of culture in a low phosphate solution (LP) compared to plants grown under normal conditions (sufficient phosphate, SP), and these differences were increased associated with the stress caused by phosphate starvation. However, the growth of primary roots appeared not to be sensitive to low phosphate levels. This is very different to Arabidopsis. To elucidate how low phosphate levels regulate root modifications, especially lateral root development, a transcriptomic analysis of the 1.0-1.5 cm lateral root primordium zone (LRZ) of maize Q319 treated after 2 and 8 days by low phosphate was completed respectively. The present work utilized an Arizona Maize Oligonucleotide array 46K version slides, which contained 46,000 maize 70-mer oligonucleotides designated by TIGR ID, and the sequence information is available at the website of the Maize Oligonucleotide Array Project as the search item representing the >30,000 identifiable unique maize genes (details at http://www.maizearray.org). Keywords: low phosphate, Lateral Root Primordium Zone, maize
Project description:Low phosphate concentrations are frequently a constraint for maize growth and development, and therefore, enormous quantities of phosphate fertilizer are expended in maize cultivation, which increases the cost of planting. Low phosphate stress not only increases root biomass but can also cause significant changes in root morphology. Low phosphate availability has been found to favor lateral root growth over primary root growth by dramatically reducing primary root length and increasing lateral root elongation and lateral root density in Arabdopsis. While in our assay when inbred line Q319 subjected to phosphate starvation, The numbers of lateral roots and lateral root primordia were decreased after 6 days of culture in a low phosphate solution (LP) compared to plants grown under normal conditions (sufficient phosphate, SP), and these differences were increased associated with the stress caused by phosphate starvation. However, the growth of primary roots appeared not to be sensitive to low phosphate levels. This is very different to Arabidopsis. To elucidate how low phosphate levels regulate root modifications, especially lateral root development, a transcriptomic analysis of the 1.0-1.5 cm lateral root primordium zone (LRZ) of maize Q319 treated after 2 and 8 days by low phosphate was completed respectively. The present work utilized an Arizona Maize Oligonucleotide array 46K version slides, which contained 46,000 maize 70-mer oligonucleotides designated by TIGR ID, and the sequence information is available at the website of the Maize Oligonucleotide Array Project as the search item representing the >30,000 identifiable unique maize genes (details at http://www.maizearray.org). Keywords: low phosphate, Lateral Root Primordium Zone, maize Two-condition experiment, low phosphate treated lateral root primordium zone of maize root vs. normal cultrued lateral root primordium zone. Biological replicates: 9 control, 9 treated, independently grown and harvested. One replicate per array.
Project description:Phosphate limitation constrains plant development in natural and agricultural systems. Under phosphate-limiting conditions plants activate genetic, biochemical and morphological modifications to cope with phosphate starvation. One of the morphological modifications that plants induce under phosphate limitation is the arrest of primary root growth and it is induced by the root tip contact with low phosphate media. The sensitive to proton rhizotoxicity (stop1) and aluminium activate malate transporter 1 (almt1) mutants of Arabidopsis thaliana continue primary root growth under in vitro Pi-limiting conditions, thus, to get insight into the molecular components that control primary root growth inhibition under low phosphate conditions we extracted and sequenced mRNA from the root tips (2-3 mm from the root apex) of wild-type plants (Col-0 accession) and low-phosphate-insensitive mutants almt1 and stop1 grown under low and high phosphate conditions 5 days after germination using an RNA-seq methodology.
Project description:Optimal plant growth is hampered by limiting amounts of the essential macronutrient phosphate in most soils. As a response, plant roots produce root hairs to capture this immobile nutrient. Although vital to high-yielding crops, this response remains poorly understood. By generating and exploiting a high spatial and temporal resolution single cell atlas of the Arabidopsis root, we show a remarkable enrichment of TMO5/LHW target genes in root hair epidermal cells. Moreover, these vascular bHLH factors are sufficient to induce a root hair formation response in the epidermal cells, similar as observed during low phosphate conditions, via the downstream cytokinin signaling. We further show that root hair formation under low phosphate conditions is almost absent when TMO5 function or cytokinin signaling is perturbed. In conclusion, cytokinin signaling links the adaptation of roots under low phosphate conditions in the epidermis to perception in vascular cells.
Project description:Plants acquire essential elements from inherently heterogeneous soils, in which phosphate and iron availabilities vary. Consequently, plants developed adaptive strategies to cope with low iron and low phosphate levels, including alternation between root growth enhancement and attenuation. How this adaptive response is achieved remains unclear. Here, we found that low iron accelerates the root growth of Arabidopsis thaliana by activating brassinosteroid signaling, whereas low-phosphate-induced high iron accumulation inhibited it. Altered hormone signaling intensity also modulated iron accumulation in the root elongation and differentiation zones, constituting a feedback response between brassinosteroid and iron. Surprisingly, the early effect of low iron levels on root growth required the brassinosteroid receptor but the hormone ligand was negligible. The brassinosteroid receptor inhibitor BKI1, the transcription factors BES1/BZR1 and the ferroxidase LPR1, stood at the base of this feedback loop. Hence, shared brassinosteroid and iron regulatory components link nutrient status to root morphology, thereby driving the adaptive response.
Project description:The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light-quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in one-month-old Arabidopsis thaliana (Col‐0) plants exposed for one week to 4 °C at short‐day conditions under white (100 and 20 μmol m‐2s‐1), blue or red (20 μmol m‐2s‐1) light conditions. An upregulated expression of CBF1, an inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accessions, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light treated plants at low temperature and showed that the cold response is highly accession specific. In general, blue light increased mainly the cold-stress related proteins and red light induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light driven cell function maintaining program and blue light activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Project description:Soil microbe isolates from the Dangl lab were exposed to media containing high(+) low(-)phosphate as well as root exudates from Arabidopsis. (+2-, high phosphate media with exudate; -2+, low phosphate media with exudate added)
This set is comprised of B3R1T1 indicating box one of the isolate library (strains 201 through 296) and the first biological and technical replicates.
Project description:Transcriptional profiling of 4 maize varieties comparing genetic root response under control temperature conditions with genetic root response under low temperature conditions
Project description:The objective of this project is to identify genes that are expressed in the Arabidopsis thaliana root tip and that are early induced (or repressed) by phoshate deficiency. Seedlings were germinated and grown (for 6 days) on phosphate rich medium and transfered to either a phosphate poor medium (Pi- = 20uM Pi treatment) or a phosphate rich medium (Pi+ = 500uM, Pi = control). Fifteen and 60 minutes after transfer, the tip (~800um) of the primary root was cut under a dissecting microscope. About 100 root tips per condition were harvested and there mRNA was analysed with the use of microarrays. 6 dye-swap - time course,treated vs untreated comparison
Project description:Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. Here we demonstrate that the SPX-MFS proteins, designated as Phosphate Transporter 5 family (PHT5), also named Vacuolar Phosphate Transporter (VPT), function as vacuolar Pi transporters. Based on 31P-magnetic resonance spectroscopy analysis, Arabidopsis pht5;1 loss-of-function mutants accumulate less Pi and exhibit a lower vacuolar-to-cytoplasmic Pi ratio than controls. Conversely, overexpression of PHT5 leads to massive Pi sequestration into vacuoles and altered regulation of Pi starvation-responsive genes. Furthermore, we show that heterologous expression of OsSPX-MFS1, the rice PHT5 homolog, mediates Pi influx to yeast vacuoles. Our findings uncover a group of Pi transporters in vacuolar membranes that regulate the cytoplasmic Pi homeostasis required for the fitness of plant growth. 10-day seedlings grown on Pi-sufficient medium or followed by 1-day or 3-day Pi starvation, shoot RNA and root RNA were extracted separately