Project description:This is an auto-generated model with COBRA Matlab toolbox. The gadMorTrinigy de novo Trinity transcript assembly and peptide sequences are available at https://doi.org/10.6084/m9.figshare.c.5168303.v2
Project description:The goal of this study was to lay the groundwork for comparative transcriptomics of sex differences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. To examine differences in sex-differential gene expression, short read transcript sequencing and de novo transcriptome assembly were performed. Messenger RNA (mRNA) was isolated from dissected brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The data consist of short read sequences for the two different life stages in each sex. Computational analyses on these data include de novo transcriptome assembly, using Trinity and CAP3 assembly suites, and differential expression analysis using the edgeR package. Sample-specific and combined transcriptomes, gene annotations, and differential expression results are described in this data note and are available from associated database submissions.
Project description:The aim of this study is to assess the global transcriptome changes during the shedding of the flower, which normally takes around 6 or 7 days. We selected four time points (from day 0 to day 6) and three different tissues within the flower bud; distal, abscission and proximal zones with three biological replicates. RNA extraction, library prep and paired end sequencing was performed. Our special interest is try to describe the changes in the abscission zone and the two adjacent tissues in order to get a whole picture of the shedding process. We performed a de novo assembly by Trinity and detected the transcripts and expression changes across spatial and temporal comparisons.
Project description:Purpose: The goal of this study is to screen the candidate genes involved in drought avoidance of Q. liaotungensis Methods:The Q. liaotungensis leaves were generated by deep sequencing, using Illumina Hiseq 4000. The high-quality reads were obtained by removing the reads that contained adaptor contamination, low quality bases and undetermined bases.The transcriptome were de novo assembly. Results:A total of 54153182 raw reads were obtained from Illumina sequencing platform, and 53021436 clean reads were generated after filtering out the low quality reads. The clean reads were assembled into 41207 transcripts with median length 704 and GC content 42.17%, and 25593 unigenes with median length 687 and GC content 42.31%, based on Trinity assembly platform Conclusions:RNA-Seq was applied to polyadenylate-enriched mRNAs from leaves of Q. liaotungensis to obtain the transcriptome. De novo assembly was then applied followed by gene annotation and functional classification. The SSRs and SNPs were also obtained using assembled transcripts as reference sequences. The results of this study lay the foundation for further research on genetic diversity of Quercus.
Project description:Purpose: The goal of this study is to provided a comprehensive genomic information for functional genomic studies in Q. mongolica. Methods:The Quercus mongolica leaves were generated by deep sequencing, using Illumina Hiseq 4000. The high-quality reads were obtained by removing the reads that contained adaptor contamination, low quality bases and undetermined bases.The transcriptome were de novo assembly. Results:A total of 52934562 raw reads were obtained from Illumina sequencing platform. After filtering out the low quality reads, we obtained 52076914 clean reads, which assembled into 39130 transcripts with a mean length of 742 bp and GC content of 42.12%, and 24196 unigenes with a mean length of 732 bp and GC content of 42.34%, based on Trinity assembly platform. Conclusions:RNA-Seq was applied to polyadenylate-enriched mRNAs from leaves of Q. mongolica to obtain the transcriptome. De novo assembly was then applied followed by gene annotation and functional classification. The SSRs and SNPs were also obtained using assembled transcripts as reference sequences. The results of this study lay the foundation for further research on genetic diversity of Quercus.
Project description:We report the de novo assembled transcriptome of Y-organs from two intermolt and two pre-molt blue crabs. Data was obtained from RNAseq, assembled using Trinity, and differential expression was determined using DEseq2 in R.
Project description:The Xenopus genus is well known for the high degree of polyploidy observed in its constituent species, but there is minimal information about transcriptional changes observed in these highly polyploid vertebrates. Xenopus andrei, an octoploid species within the Xenopus genus, presents a novel system for assessing a polyploid transcriptome during vertebrate development. RNA-Seq data was generated at nine different developmental stages ranging from unfertilized eggs through late tailbud stages. Additionally, using Trinity, RNA-seq data from all nine stages was pooled to create a draft de novo assembly of the transcriptome. This represents the first published assembly of an octoploid vertebrate transcriptome. This RNA-Seq and transcriptome data will be useful in comparing polyploid transcriptomes across Xenopus species, as well as understanding evolutionary implications of whole-genome duplication in vertebrates.
Project description:We combined multi-omics approaches including de novo transcriptome assembly, ribosome profiling and MS-based peptidomics to study the global role of mRNA translation and small ORFs (sORFs) in rice herbicide resistant mutant.