Project description:Purpose:MicroRNAs (miRNAs) are members of a rapidly growing class of small endogenous non-coding RNAs that play crucial roles in post-transcriptional regulator of gene expression in many biological processes. Feline Panleukopenia Virus (FPV) is a highly infectious pathogen that causes severe disease in pets, economically important animals and wildlife in worldwide. However, the molecular mechanisms underlying the pathogenicity of FPV have not been completely clear. To study the involvement of miRNAs in the FPV infection process, miRNAs expression profiles were identified via deep sequencing in the feline kidney cell line (F81) infected and uninfected with FPV. Methods:miRNA-sequencing analysis was performed on an Illumina Hiseq 2500 (LC Sciences, USA) following the vendor's recommended protocol Results:As a result, 673 known miRNAs belonging to 210 families and 278 novel miRNAs were identified. Then we found 57 significantly differential expression miRNAs by comparing the results between uninfected and FPV-infected groups. Furthermore, stem-loop qRT-PCR was applied to validate and profile the expression of the randomly selected miRNAs; the results were consistent with those by deep sequencing. Furthermore, the potential target genes were predicted. The target genes of differential expression miRNAs were analyzed by GO and KEGG pathway. Conclusions:The identification of miRNAs in feline kidney cell line before and after infection with Feline Panleukopenia Virus will provide new information and enhance our understanding of the functions of miRNAs in regulating biological processes.
Project description:Approximately 5% of cats in animal shelters in the United States test positive for either feline leukemia virus (FeLV) or feline immunodeficiency virus (FIV), which translates to more than 100,000 positive cats managed by shelters each year. Little is known about the current status of retroviral management in animal shelters, particularly in regions burdened by chronic pet overpopulation and high shelter admissions, such as the southern United States. The purpose of this study was to describe feline retroviral management in Florida shelters. Shelters were surveyed on practices including selection of cats for testing, diagnostic techniques, and outcome options for cats with positive test results. Responses were received from 139 of 153 animal shelters known to admit cats, including 55 municipal shelters (40%), 70 private shelters (50%), and 14 private shelters with municipal contracts (10%). A total of 115 shelters (83%) performed at least some testing, most using combination point-of-care devices for simultaneous FeLV antigen and FIV antibody screening. Of shelters that performed any testing, 56 (49%) tested all cats for FeLV and 52 (45%) tested all cats for both FeLV and FIV. The most common reason for testing was screening adoptable cats (108 shelters; 94%) and cats available for transfer to other organizations (78; 68%). Testing cats in trap-neuter-return/return-to-field programs was least common (21; 18%). Most common outcome options for positive cats included adoption (74; 64%), transfer (62; 54%), and euthanasia (49; 43%). Euthanasia following a positive test result was more common for cats with FeLV (49; 43%) than for cats with FIV (29; 25%) and was more common in municipal shelters, rural shelters, shelters taking in <500 cats a year, and shelters with overall live outcome rates for cats <70%. Although Florida shelter compliance with national guidelines for identification and management of FeLV and FIV positive cats was variable, most had live outcome options for at least some of their cats with positive test results. Increased access to training and practical programmatic tools may help more shelters implement cost-effective testing protocols, reduce risk for transmission to other cats, and support the best outcomes for this vulnerable population of cats.
Project description:<p>Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate nucleocapsid assembly by characterizing the interactions of the wild-type and truncated capsid proteins with membranes by using biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.</p>
Project description:Feline leukemia virus (FeLV) is a retrovirus with variable rates of infection globally. DNA was obtained from cats' peripheral blood mononuclear cells, and proviral DNA of pol and env genes was detected using PCR. Seventy-six percent of cats scored positive for FeLV using env-PCR; and 54 %, by pol-PCR. Phylogenetic analysis of both regions identified sequences that correspond to a group that includes endogenous retroviruses. They form an independent branch and, therefore, a new group of endogenous viruses. Cat gender, age, outdoor access, and cohabitation with other cats were found to be significant risk factors associated with the disease. This strongly suggests that these FeLV genotypes are widely distributed in the studied feline population in Mexico.
Project description:From 2002 through 2005, an outbreak of feline leukemia virus (FeLV) occurred in Florida panthers (Puma concolor coryi). Clinical signs included lymphadenopathy, anemia, septicemia, and weight loss; 5 panthers died. Not associated with FeLV outcome were the genetic heritage of the panthers (pure Florida vs. Texas/Florida crosses) and co-infection with feline immunodeficiency virus. Genetic analysis of panther FeLV, designated FeLV-Pco, determined that the outbreak likely came from 1 cross-species transmission from a domestic cat. The FeLV-Pco virus was closely related to the domestic cat exogenous FeLV-A subgroup in lacking recombinant segments derived from endogenous FeLV. FeLV-Pco sequences were most similar to the well-characterized FeLV-945 strain, which is highly virulent and strongly pathogenic in domestic cats because of unique long terminal repeat and envelope sequences. These unique features may also account for the severity of the outbreak after cross-species transmission to the panther.
Project description:Feline leukemia virus (FeLV) is thought to induce neoplastic diseases in infected cats by a variety of mechanisms, including the transduction of host proto-oncogenes. While FeLV recombinants that encode cellular sequences have been isolated from tumors of naturally infected animals, the acquisition of an unrelated host gene has never been documented in an experimental FeLV infection. We isolated recombinant FeLV proviruses encoding feline Notch2 sequences from thymic lymphoma DNA of two cats inoculated with the molecularly cloned virus FeLV-61E. Four recombinant genomes were identified, three in one cat and one in the other. Each had similar but distinct transduction junctions, and in all cases, the insertions replaced most of the envelope gene with a region of Notch2 that included the intracellular ankyrin repeat functional domain. The product of the FeLV/Notch2 recombinant provirus was a novel, truncated 65- to 70-kD Notch2 protein that was targeted to the cell nucleus. This virally encoded Notch2 protein, which resembles previously constructed, constitutively activated forms of Notch, was apparently expressed from a subgenomic transcript spliced at the normal envelope donor and acceptor sequences. The data reported here implicate a nuclear, activated Notch2 protein in FeLV-induced leukemogenesis.