Project description:We used nAnT-iCAGE – unbiased single-nucleotide resolution method for genome-wide transcription start site (TSS) capture, to produce libraries from Saccharomyces cerevisiae total RNA. Our goal was to investigate S. cerevisiae core-promoters and assess the rules of transcription initiation in BY4741 strain grown in YPD media.
Project description:Cryptococcus neoformans is a life-threatening basidiomycete fungal pathogen responsible for meningoencephalitis in immunocompromised patients. This yeast can adapt to diverse habitats, efficiently produces virulence factors, and escapes immune surveillance. This implies intricate mechanisms underlying its gene regulation networks, which are yet to be comprehensively understood. Alternative transcription usage regulation has been identified as the major mean for gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. We here re-analysed transcription start site (TSS)-seq data to define genuine TSS clusters in two species of pathogenic Cryptococcus. We identified two types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates aTSS usage genome-wide when cells switch from exponential phase to stationary phase. Tur1 has been previously shown to be essential for virulence in C. neoformans. Accordingly, we demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the Wild-type (WT) strain.
Project description:The initial step of RNA polymerase II (Pol II) transcription involves a large number of transcription factors and arises at multiple sites within most promoters. TFIIH is an essential, multi-subunit transcription factor that assembles on promoter DNA with Pol II and five other general transcription factors (GTFs) to form a pre-initiation complex (PIC) for basal transcription. During transcription initiation, TFIIH melts promoter DNA through the ATPase activity of its Ssl2 subunit. In the model eukaryote Saccharomyces cerevisiae, after DNA melting, Pol II scans downstream for usable transcription start sites (TSSs). To understand the function of Ssl2/TFIIH in promoter scanning and TSS selection, we identified novel alleles of SSL2 in genetic screens for mutants defective in TSS distribution that may potentially arise from altered scanning. Consistent with this notion, these ssl2 alleles alter scanning in ways that are distinct from how changes to the Pol II active site alter scanning and this difference is observed genome-wide. Our investigations support two major pathways in controlling promoter scanning and TSS selection, one controlling the efficiency of initiation through Pol II activity or factors regulating Pol II activity; another network appears to control the processivity of scanning by Ssl2/TFIIH.