Project description:The aim of this sequencing experiment was to make available tissue expression panels for selected fish species for comparative expression studies between the species. Tissue samples were collected for zebrafish (Danio rerio), medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss). Tissue types included liver, skin, muscle, heart, gut, gill, eye, brain for all three species, with additionally pyloric caeca, kidney, head kidney, and spleen for rainbow trout. Only liver samples were taken in replicate of four or three for rainbow trout. All fish were raised under standard rearing conditions for the species. Total RNA was extracted from the tissue samples and paired‐end sequencing of sample libraries was completed on an Illumina HiSeq 2500 with 125‐bp reads. Processed count tables per species as raw counts, FPKM, or TPM, were generated from read alignment to the Ensembl genomes of the respective species using STAR and gene level counting using RSEM and Ensembl gene annotation.
Project description:<div>Olive (Olea europaea) has a long history of medicinal and nutritional values own to it rich in polyphenol and fatty acids (FAs) in fruits. In order to better understand the biosynthesis important of these metabolites, we generated comprehensive Iso-Seq full-length and illumina RNA-seq transcriptome, and targeted metabolomics dataset of different olive fruits maturity. The targeted metabolomics by using both GC/MS and LC/MS were totally quantified 35 FAs and 13 polyphenols. Iso-Seq library was constructed and sequenced by PacBio Sequel System, and a total of 5,891,652 (10.55 G) with an average length of 1,791 subreads were obtained. 492,350 circular consensus sequences (CCSs) were formed after merging and error correction through subread comparison. Of the 492,350 CCSs, 399,263 were found to be full-length non chimera (FLNC) reads, and 187,517 consensus reads were finally obtained by using clustering algorithm of Iterative clustering for error (IEC). These multiomics data provide a foundation to elucidate the mechanisms regulating biosynthesis of polyphenol and FAs during the maturation of olive fruits.</div><div><br><span _ngcontent-ook-c3= class=ng-star-inserted><span _ngcontent-jcp-c3= class=ng-star-inserted><span _ngcontent-iov-c3= class=ng-star-inserted><b>Tyrosol only UPLC-MS</b> <span _ngcontent-iov-c3= class=ng-star-inserted>protocols and data associated to this study are reported in the current study</span></span></span></span><b><span _ngcontent-ook-c3= class=ng-star-inserted><span _ngcontent-jcp-c3= class=ng-star-inserted><span _ngcontent-iov-c3= class=ng-star-inserted><span _ngcontent-iov-c3= class=ng-star-inserted> MTBLS1127.<br></span></span></span></span></b></div><div><span _ngcontent-jcp-c3= class=ng-star-inserted><div><b><br></b></div><div><b>Polyphenols UPLC-MS</b> protocols and <span _ngcontent-ook-c3= class=ng-star-inserted><span _ngcontent-jcp-c3= class=ng-star-inserted>data associated to this study are reported in</span></span> <a href=https://www.ebi.ac.uk/metabolights/MTBLS814><b>MTBLS814</b></a>.</div><div><br></div><div><b>GC-MS</b> protocols and data associated to this study are reported in <b><a href=https://www.ebi.ac.uk/metabolights/MTBLS855>MTBLS855</a></b>.</div><div><br></div></span></div>
Project description:The aim of this sequencing experiment was to make available liver tissue expression for selected fish species, northern pike (Esox lucius, Eluc), coho salmon (Oncorhynchus kisutch, Okis) and Arctic charr (Salvelinus alpinus, Salp), for comparative expression studies between the species. Samples in replicate of four were sacrificed according to protocols at each of the facilities from where samples were obtained. RNA was extracted from samples and Illumina TruSeq Stranded mRNA libraries were built. Sequencing was performed in two passes on an Illumina HiSeq2500, paired-end 125bp reads. Processed count tables per species as raw counts, FPKM, or TPM, were generated from read alignment to the NCBI genomes of the respective species using STAR and gene level counting using RSEM and NCBI gene annotation.
Project description:Telomere homeostasis, crucial for various biological processes, relies on telomerase activity. We identified ZC3H15 as a novel telomerase-interacting protein. Its deletion unexpectedly increased telomerase activity but led to shortened telomeres and cellular senescence. ZC3H15 interacts with telomerase and itself, regulating telomerase activity in an RNA-dependent manner. Proximity labeling showed ZC3H15's interaction with proteins involved in organelle assembly and RNA processes. Loss of ZC3H15 sequestered TERC in the Cajal body, reducing telomerase recruitment to telomeres during S phase. These findings unveil ZC3H15's role in telomere dynamics and cellular senescence, suggesting its potential as a target for cancer therapy or anti-aging interventions.
Project description:Piwi-interacting (pi) RNAs are a class of germline-expressed small RNAs that have been linked to epigenetic programming in metazoa. C. elegans piRNAs known as 21U-RNAs are defined by more than 15,000 genome-encoded species. To explore the origin of 21U-RNAs we employed methods to enrich the 5' ends of Pol II transcripts. We show that a species of capped-short (cs) RNA is frequently expressed bidirectionally at Pol II loci in C. elegans. Interestingly, at annotated 21U-RNA loci, csRNAs originate precisely 2 nt upstream of the mature piRNA species suggesting that csRNAs are piRNA precursors. In addition, we show that csRNAs associated with TS sites genome-wide define a previously overlooked class of 21U-RNA loci, and nearly double the number of piRNA species available for genome surveillance. Our methods should be of general utility in TS site identification and 5' anchored RNA-expression profiling.
2012-12-22 | GSE40053 | GEO
Project description:Identification and characterization of lepidopteran insect telomerase RNA
Project description:Piwi-interacting (pi) RNAs are a class of germline-expressed small RNAs that have been linked to epigenetic programming in metazoa. C. elegans piRNAs known as 21U-RNAs are defined by more than 15,000 genome-encoded species. To explore the origin of 21U-RNAs we employed methods to enrich the 5' ends of Pol II transcripts. We show that a species of capped-short (cs) RNA is frequently expressed bidirectionally at Pol II loci in C. elegans. Interestingly, at annotated 21U-RNA loci, csRNAs originate precisely 2 nt upstream of the mature piRNA species suggesting that csRNAs are piRNA precursors. In addition, we show that csRNAs associated with TS sites genome-wide define a previously overlooked class of 21U-RNA loci, and nearly double the number of piRNA species available for genome surveillance. Our methods should be of general utility in TS site identification and 5' anchored RNA-expression profiling. Identification of capped RNA including capped small RNA and long capped RNA in C. elegans. The mouse data are independent data to test the CapSeq sequencing protocol.
Project description:Replacement of high-value fish species with cheaper varieties or mislabelling of food unfit for human consumption is a global problem violating both consumers’ rights and safety. For distinguishing fish species in pure samples, DNA approaches are available; however, authentication and quantification of fish species in mixtures remains a challenge. In the present study, a novel high-throughput shotgun DNA sequencing approach applying masked reference libraries was developed and used for authentication and abundance calculations of fish species in mixed samples. Results demonstrate that the analytical protocol presented here can discriminate and predict relative abundances of different fish species in mixed samples with high accuracy. In addition to DNA analyses, shotgun proteomics tools based on direct spectra comparisons were employed on the same mixture. Similar to the DNA approach, the identification of individual fish species and the estimation of their respective relative abundances in a mixed sample also were feasible. Furthermore, the data obtained indicated that DNA sequencing using masked libraries predicted species-composition of the fish mixture with higher specificity, while at a taxonomic family level, relative abundances of the different species in the fish mixture were predicted with slightly higher accuracy using proteomics tools. Taken together, the results demonstrate that both DNA and protein-based approaches presented here can be used to efficiently tackle current challenges in feed and food authentication analyses.