Project description:The ancestral sarbecovirus giving rise to SARS-CoV-2 is posited to have originated in bats. While SARS-CoV-2 causes asymptomatic to severe respiratory disease in humans, little is known about the biology, virus tropism, and immunity of SARS-CoV-2-like sarbecoviruses in bats. SARS-CoV-2 has been shown to infect multiple mammalian species, including various rodent species, non-human primates, and Egyptian fruit bats. Here, we investigate the Jamaican fruit bat (Artibeus jamaicensis) as a possible model species to study reservoir responses. SARS-CoV-2 can utilize Jamaican fruit bat ACE2 spike for entry in vitro. However, we find that SARS-CoV-2 Delta does not efficiently replicate in Jamaican fruit bats in vivo. We observe infectious virus in the lungs of only one animal on day 1 post inoculation and find no evidence for shedding or seroconversion. This is possibly due to host factors restricting virus egress after aborted replication. Furthermore, we observe no significant immune gene expression changes in the respiratory tract but do observe changes in the intestinal metabolome after inoculation. This suggests that, despite its broad host-range, SARS-CoV-2 is unable to infect all bat species and Jamaican fruit bats are not an appropriate model to study SARS-CoV-2 reservoir infection.
Project description:Transcriptome Profiling of a Pathogenic Response to a Viral Infection in Jamaican Fruit Bats Artibeus jamaicensis Experimentally Infected With Tacaribe Virus
Project description:Transcriptome Profiling of a Pathogenic Response to a Viral Infection in Jamaican Fruit Bats Artibeus jamaicensis Experimentally Infected With Tacaribe Virus
Project description:Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected Jamaican fruit bats with the bat-derived influenza A virus H18N11. Using comparative single-cell RNA sequencing, we generated a single-cell atlas of the Jamaican fruit bat intestine and mesentery, the target organs of infection. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was prominent in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this virus. Our study provides insight into the virus-host relationship and thus serves as a fundamental resource for further characterization of bat immunology.
Project description:Bats are a widespread group of mammals thought to host a variety of viruses and other disease agents. Here we performed RNA-sequencing on Artibeus jamaicensis infected with the New World arenavirus, Tacaribe Virus, to generate an extensive bat transcriptome.