Project description:SChLAP1 is a novel long non-coding RNA expressed in prostate cancer. Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus SChLAP1-siRNA treatment. Goal was to determine the effect of SChLAP1 knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SChLAP1 siRNA treated cells. Biological replicates: 1 control replicate, 2 treatment replicates. Technical replicates: 3 replicates per SChLAP1 siRNA. Cell lines: 22Rv1 and LNCaP.
Project description:SChLAP1 is a novel long non-coding RNA expressed in prostate cancer. Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus SChLAP1-siRNA treatment. Goal was to determine the effect of SChLAP1 knockdown on gene expression in prostate cancer.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer. Two-condition experiment: non-targeting siRNA versus SWI/SNF-siRNA treated cells. Three SWI/SNF proteins were targeted: SMARCA2, SMARCA4, and SMARB1. Biological replicates: 1 control replicate, 2 treatment replicates per SWI/SNF protein. Technical replicates: 1 replicate per SWI/SNF protein. Cell lines: 22Rv1 and LNCaP.
Project description:Here we performed transcriptional profiling of the prostate cancer cell lines LNCaP and 22Rv1 comparing non-targeting siRNA treatment versus siRNAs targeting SWI/SNF complex proteins (SMARCA2, SMARCA4, and SMARCB1). Goal was to determine the effect of SWI/SNF knockdown on gene expression in prostate cancer.
Project description:ETS gene fusions have been characterized in a majority of prostate cancers, however key molecular alterations in ETS negative cancers are unclear. Here we used an outlier meta-analysis (meta-COPA) to identify SPINK1 outlier-expression exclusively in a subset of ETS rearrangement negative cancers (~10% of total cases). We validated the mutual exclusivity of SPINK1 expression and ETS fusion status, demonstrated that SPINK1 outlier-expression can be detected non-invasively in urine and observed that SPINK1 outlier-expression is an independent predictor of biochemical recurrence after resection. We identified the aggressive 22RV1 cell line as a SPINK1 outlier-expression model, and demonstrate that SPINK1 knockdown in 22RV1 attenuates invasion, suggesting a functional role in ETS rearrangement negative prostate cancers. Keywords: Genetic Modification 22RV1 cells were infected with non-targeting siRNA or siRNA against SPINK1. For reported hybridizations, the reference channel is 22RV1 cells infected with non-targeting siRNA. Duplicate hybridizations were performed with duplicate dye flips, for a total of four arrays. Over and under-expressed signatures were generated by filtering to include only features with significant differential expression (PValueLogRatio < 0.01) in all hybridizations and Cy5/Cy3 ratios > or < 1 in all hybridizations.