Project description:A functional microarray targeting 24 genes involved in chlorinated solvent biodegradation pathways has been developed and used to monitor the gene expression in a contaminated site (site B) under ERD (enhanced reductive dechlorination) treatment. The microarray format provided by NimbleGen and used in this study is 12x135K. 4 M-BM-5g of labelled antisense mRNA from 3 groundwater samples were hybridized on the microarray. A 3-chip study was performed, each corresponding to hybridization with 4 M-BM-5g of labelled antisense mRNA retrieved from a monitoring well of a contaminated site (site B). Each probe (760nt) on the microarray was synthesized in eight replicates, and a total of 5,707 random probes was used to determine the background noise. Groundwater samples were collected from a contaminated site (site B) from three monitoring wells (P1, P2 and P3). P1: well located upstream to the contamination source. P2: well in the contamination source. P3 : well located downstream to the contamination source.
Project description:A functional microarray targeting 24 genes involved in chlorinated solvent biodegradation pathways has been developed and used to monitor the gene expression in a contaminated site (site B) under ERD (enhanced reductive dechlorination) treatment. The microarray format provided by NimbleGen and used in this study is 12x135K. 4 µg of labelled antisense mRNA from 3 groundwater samples were hybridized on the microarray.
Project description:We analyzed the transcriptional response of the actinomycete Rhodococcus aetherivorans I24 to biphenyl and polychlorinated biphenyls (PCBs). This species has not been extensively exposed to PCBs, as it was first isolated from a toluene contaminated aquifer, rather than a site contaminated with polychlorinated hydrocarbons. Using a microarray targeting 3524 genes, we assessed gene expression in minimal medium supplemented with various substrates (e.g. PCBs) and in both PCB-contaminated and non-contaminated sediment slurries. Relative to the reference condition (minimal medium supplemented with glucose), 408 genes were up-regulated in the various treatments. In medium and in sediment, PCBs elicited the up-regulation of a common set of 100 genes, including chaperones (groEL), a superoxide dismutase (sodA), alkyl hydroperoxide reductase protein C (ahpC), and a catalase/peroxidase (katG). Analysis of the R. aetherivorans I24 genome sequence identified orthologs of many of the genes in the canonical biphenyl pathway, but very few of these genes were up-regulated in response to PCBs or biphenyl. This study is one of the first which utilizes microarrays to assess the transcriptional response of a soil bacterium to a pollutant under conditions which more closely resemble the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism. In addition, the identification of numerous genes expressed in contaminated soil specifically may have implications for the development of biosensors. Finally, comparative genomic and transcriptomic analyses suggest that the mere presence of orthologs of the required enzymes may not be sufficient to confer a vigorous biphenyl/PCB metabolism. RNA was isolated from cells incubated in the following: sediment from a PCB-contaminated industrial site, uncontaminated sediment from a comparable site, and defined media supplemented with glucose (3 g/L), glucose and biphenyl (3 g/L, 4.5 μM), or glucose and PCBs (3 g/L, 5 mg/L Aroclor 1254). In all cases, there were 3 biological replicates and 2 technical replicates (repeat hybridizations). A total of 3524 genes are represented on the arrays; of these, 41 and 176 are found on the plasmids pRA2 and pRA3, respectively. On average, there are 3 distinct 24nt probes per gene.
Project description:Transcriptomics analysis of biopolymer (medium chain length polyhydroxyalkanoate) producing strain P.putida LS46 cultured with biodiesel derived waste carbon sources: studies of cellular adaptation to the industrial waste streams and metabolic profiling under the polymer producing conditions. We are reporting RNAseq analysis data here as part of our multi-level Omics study of medium chain length polyhydroxyalkanoate (mcl-PHA) producing strain P.putida LS46 culture with biodiesel derived waste glycerol and waste fatty acids. The data presented here will be used in two separate manuscripts. The objectives of this study are a): to evaluate cellular responses of P.putida LS46 under industrial waste stream. b): to study gene expression profile under two selected mcl-PHA producing conditions of P.putida LS46. Comparative multi-level Omics study: for objective a): Exponential P.putida LS46 cell from waste glycerol culture compared against reagent grade pure glycerol culture. For objective b): Two mcl-PHA producing conditions, namely stationary phase waste glycerol culture and exponential phase waste fatty acid culture of P.putida LS46, were compared against exponential phase waste glycerol culture of P.putida LS46. Major results from objective a): The waste glycerol substrate induced expression of a large number of genes putatively involved in heavy metal tolerance, including three gene clusters: a putative cusABC transcript unit and two copies of copAB, which are usually involved in copper resistance and tolerance to other monovalent heavy metals. A local gene relocation was observed in cluster 1 consisting cusABC and copAB relative to the KT2440 type strain according to the phylogenetic and gene neighbourhood analyses on various P. putida strains. P. putida LS46 also contains 11 putative MerR family regulators, which sense various environmental stimuli including heavy metals. MerR-1 is an ortholog of the copper response regulator of other gram-negative bacteria, and was highly up-regulated in waste glycerol cultures. Finally, a number of genes involved in cell responses to high extra-cellular Na+ concentrations, and genes of the fatty acid beta-oxidation pathway were up-regulated in waste glycerol cultures Major results from objective b): Regardless to the type of substrates, up-regulation of two mcl-PHA synthase (PhaC1 and PhaC2), and two phasin proteins (PhaF and PhaI) are the most common genotype under mcl-PHA production conditions. PhaG and possible PhaJ4 connect fatty acid de novo synthesis to mcl-PHA in waste glycerol culture. Interestingly, expression of gene, fabZ, in production of unsaturated fatty acid from fatty acid de novo synthesis was only observed in waste glycerol culture. On the other hand, PhaJ1 and PhaJ4 derived mcl-PHA production via fatty acid beta-oxidation was observed under waste fatty acid culture. These results would help to explain observed different production kinetics and monomer distribution of the polymer. Although under active mcl-PHA production condition, depression on the expression of glpF genes in glycerol transportation system prevent further channelling extra-cellular glycerol into the cell. Waste glycerol culture also triggers trahalose synthesis pathway, a potential competing pathway during mcl-PHA synthesizing. In waste fatty acid culture, the intermediates (acyl-CoA and 3-hydroxyacyl-CoA) of fatty acid beta-oxidation were used for mcl-PHA production and were also likely hydrolysed to their free acid forms via an up-regulated thioesteras coding gene, tesA. Acetyl-CoA cleaved from the pathway was clearly channeled into glyoxylate shut for C2 carbon assimilation over spillage as CO2 through TCA cycle or used in fatty acid biosynthesis pathway. In total 4 sampling points, namely exponential phase of pure glycerol, waste glycerol and waste free fatty acids cultures, and stationary phase of waste glycerol culture. For each sampling point, 2 biological replicates were taken. (Thus 8 samples in total)