Project description:Differentially expressed genes may provide insight into the underlying mechanisms of Gulf War Illness involved in neurodegeneration.
Project description:In this study, transcriptomics was used to investigate Atlantic salmon (Salmo salar) sampled from three different field locations within Baltic Sea (Baltic Main Basin (CBS), Gulf of Finland (GoF) and Bothnian Sea (BS)) during marine migration. RNA labeling, hybridizations, and scanning were performed by the Finnish Microarray and Sequencing Centre in Turku Centre for Biotechnology.
Project description:This pilot study enrolled 9 GWI (Gulf War Illness) cases identified from the Department of Veterans Affairs GWI registry, and 11 sedentary control veterans who had not been deployed to the Persian Gulf and were matched to cases by sex, body mass index (BMI) and age.<br>We exposed GWI patients and matched controls to an exercise challenge to explore differences in immune cell function measured by classic immune assays and gene expression profiling.
Project description:Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support alternative metabolic pathways than syntrophic anaerobic oxidation of methane.
Project description:BackgroundNumerous deep-sea invertebrates, at both hydrothermal vents and methane seeps, have formed symbiotic associations with internal chemosynthetic bacteria in order to harness inorganic energy sources typically unavailable to animals. Despite success in nearly all marine habitats and their well-known associations with photosynthetic symbionts, Cnidaria remain one of the only phyla present in the deep-sea without a clearly documented example of dependence on chemosynthetic symbionts.ResultsA new chemosynthetic symbiosis between the sea anemone Ostiactis pearseae and intracellular bacteria was discovered at ~ 3700 m deep hydrothermal vents in the southern Pescadero Basin, Gulf of California. Unlike most sea anemones observed from chemically reduced habitats, this species was observed in and amongst vigorously venting fluids, side-by-side with the chemosynthetic tubeworm Oasisia aff. alvinae. Individuals of O. pearseae displayed carbon, nitrogen, and sulfur tissue isotope values suggestive of a nutritional strategy distinct from the suspension feeding or prey capture conventionally employed by sea anemones. Molecular and microscopic evidence confirmed the presence of intracellular SUP05-related bacteria housed in the tentacle epidermis of O. pearseae specimens collected from 5 hydrothermally active structures within two vent fields ~ 2 km apart. SUP05 bacteria (Thioglobaceae) dominated the O. pearseae bacterial community, but were not recovered from other nearby anemones, and were generally rare in the surrounding water. Further, the specific Ostiactis-associated SUP05 phylotypes were not detected in the environment, indicating a specific association. Two unusual candidate bacterial phyla (the OD1 and BD1-5 groups) appear to associate exclusively with O. pearseae and may play a role in symbiont sulfur cycling.ConclusionThe Cnidarian Ostiactis pearseae maintains a physical and nutritional alliance with chemosynthetic bacteria. The mixotrophic nature of this symbiosis is consistent with what is known about other cnidarians and the SUP05 bacterial group, in that they both form dynamic relationships to succeed in nature. The advantages gained by appropriating metabolic and structural resources from each other presumably contribute to their striking abundance in the Pescadero Basin, at the deepest known hydrothermal vents in the Pacific Ocean.
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
Project description:Of the nearly 1 million military personnel who participated in the 1990-1991 Gulf War, between 25% and 35% became ill with what now is referred to as Gulf War Illness (GWI), by the Department of Defense. Symptoms varied from gastrointestinal distress to lethargy, memory loss, inability to concentrate, depression, respiratory and reproductive problems. The symptoms have persisted for 30 years in those afflicted but the basis of the illness remains largely unknown. Nerve agents and other chemical exposures in theater have been implicated but the long-term effects of these acute exposures have left few if any identifiable signatures. The major aim of this study is to elucidate the possible genomic basis for the persistence, especially of the neurological and behavioral effects. To address this, we performed a whole genome epigenetic analysis of the proposed cause of GWI, viz., exposure to organophosphate neurotoxicants combined with high circulating glucocorticoids in two inbred mouse strains, C57BL/6J and DBA/2J. The animals received corticosterone in their drinking water (20mg%, w/v) for 7 days followed by injection of diisopropylfluorophosphate, a nerve agent surrogate (DFP, 4mg/kg, i.p.). Control mice were maintained under normal husbandry. Six weeks after DFP injection, the animals were euthanized and medial prefrontal cortex harvested for genomic methylation analysis by MBD-seq. We observed 67 differentially methylated genes, notably among them, Ttll7, Akr1c14, Slc44a4, and Rusc2, all related to different symptoms of GWI. Our results support proof of principle of genetic differences in the chronic effects of GWI-related exposures and may reveal why the disease has persisted in many of the now aging Gulf War veterans.