Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression during early stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on mycorrhizal root fragments enriched for early fungal infection stages. We used Medicago GeneChips to detail the global programme of gene expression in response to early stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these early stages.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel cell-type specific gene expression during early stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on laser-microdissected cells. We used Medicago GeneChips to detail the cell-type specific programme of gene expression in early stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these stages. Medicago truncatula Gaertn M-bM-^@M-^XJemalongM-bM-^@M-^Y genotype A17 plantlets were grown in the climate chamber. Plants grown for the collection appressorial root areas (APP) and the corresponding non-appressorial root areas (NAP) were mycorrhized after 3 weeks and roots were harvested at 5-6 dpi.
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel cell-type specific gene expression during late stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on laser-microdissected cells. We used Medicago GeneChips to detail the cell-type specific programme of gene expression in late stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these stages. Medicago truncatula Gaertn M-bM-^@M-^XJemalongM-bM-^@M-^Y genotype A17 plantlets were grown in the climate chamber. Plants grown for the collection of root cortical cells containing arbuscules (ARB), root cortical cells from mycorrhizal roots (CMR), and root epidermal cells from mycorrhizal roots (EPI) were mycorrhized after 2 weeks with Glomus intraradices and mycorrhizal roots were harvested at around 21 days post inoculation (dpi).
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression during early stages of Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on mycorrhizal root fragments enriched for early fungal infection stages. We used Medicago GeneChips to detail the global programme of gene expression in response to early stages of colonization by arbuscular mycorrhizal fungi and identified genes differentially expressed during these early stages. Medicago truncatula GFP-HDEL hairy roots (genotypes A17 and DMI3) were grown in vertically-oriented petri dishes, incubated at 26M-BM-0C and inoculated with 8 Gigaspora margarita spores, which were positioned between the lateral roots. G.margarita spores germinated in 2 to 4 days. Hyphopodia were observed after 5-6 days. Root fragments which reacted to the fungal contact were collected and frozen. Non-inoculated control root fragments were harvested at a comparable age.